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a b s t r a c t

The purpose of this study was to investigate the cooperative effects of simvastatin (SIM) and stromal cell-
derived factor-1a (SDF-1a) on the osteogenic and migration capabilities of mesenchymal stem cells
(MSCs), and construct a cell-free bone tissue engineering system comprising SIM, SDF-1a and scaffold.
We found that 0.2 mM SIM significantly increased alkaline phosphatase activity (P < 0.05) of mouse bone
marrow MSCs with no inhibition of cell proliferation, and enhanced the chemotactic capability of SDF-1a
(P < 0.05). Next, we constructed a novel cell-free bone tissue engineering system using PLGA loaded with
SIM and SDF-1a, and applied it in critical-sized calvarial defects in mice. New bone formation in the
defect was evaluated by micro-CT, HE staining and immunohistochemistry. The results showed that PLGA
loaded with SIM and SDF-1a promoted bone regeneration significantly more than controls. We inves-
tigated possible mechanisms, and showed that SDF-1a combined with SIM increased MSC migration and
homing in vivo, promoted angiogenesis and enhanced the expression of BMP-2 in newly-formed bone
tissue. In conclusion, SIM enhanced the chemotactic capability of SDF-1a and the cell-free bone tissue
engineering system composed of SIM, SDF-1a and scaffold promoted bone regeneration in mouse
critical-sized calvarial defects.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Bone tissue engineering has been widely studied. Many in-
vestigators [1e5] have succeeded in regenerating bone defects with
different kinds of seed cells, including bone marrow derived
mesenchymal stem cells (BMMSCs) and adipose-derived stromal
cells (ASCs). Cell delivery has been the classical approach in bone
regeneration. But this strategy presents several notable shortcom-
ings, such as the high cost and time-consuming nature of ex vivo
cell culture, the limited number of seed cells that can actually
contribute to bone formation, and possible contamination and
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biological behavior change of the cells during cell expansion and
passage [6e9].

How canwe avoid the limitations of cell delivery? A cell-homing
approach for tooth regeneration [10] provides a clue, as every single
body contains BMMSCs which can differentiate into osteogenic
cells. The key is to find a way to chemoattract them and induce
them to differentiate along the osteoblastic lineage in situ, in order
to finally achieve bone regeneration.

Stromal cell-derived factor 1 (SDF-1), a member of the CXC
family of chemokines, includes several isoforms: SDF-1a, -b, -g, -d,
-ε and -4, which vary in the number of amino acid extensions at the
carboxyl (C) [11], SDF-1 plays many important roles through acti-
vation of a G protein-coupled trans-membrane receptor CXC che-
mokine receptor-4 (CXCR4) [12,13]. SDF-1 signaling is not only
essential for embryonic organ development [14e16], but is also
important for maintaining postnatal tissue homeostasis [17e19]. In
addition, there is increasing data suggesting SDF-1 signaling is
necessary for repair or regeneration of brain [20], heart [21], muscle
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Table 1
Processing solutions for scaffolds.

Groups Concentration of the solution Solvent

Blank control e PBS with 2% DMSO
SIM 0.2 mM PBS with 2% DMSO
SDF-1a 200 ng/ml PBS with 2% DMSO
SIM and SDF-1a SIM: 0.2 mM;

SDF-1a: 200 ng/ml
PBS with 2% DMSO
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[22], liver [23], kidney [24], skin [25], tooth [26] and bone [26e28],
via the recruitment of circulating or residing CXCR4-expressing
MSCs. There is much evidence to suggest that MSCs can be che-
moattracted by the delivery of SDF-1.

Moreover, bone regeneration requires osteogenic factors in
addition to the seed cells. It is well known that several members of
the bonemorphogenetic protein (BMP) family, including BMP-2, -4,
-6, -7, and -9 [29e37], can induce MSCs to undergo osteogenic
differentiation and therefore promote bone formation. However,
the application of BMPs has some disadvantages, including
complicated synthesis, ease of degradation and high cost [38e40].
Our previous studies have shown that simvastatin (SIM), an in-
hibitor of the competitive 3-hydroxy-3-methyl coenzyme A (HMG-
CoA) reductase, improves the osteogenesis of ASCs [41]. Meanwhile
there have been many other studies demonstrating the bone pro-
moting effects of the local application of SIM with different carriers
in various animal models [42e45]. For these reasons, we decided to
use SIM as an osteogenic growth factor. Furthermore, SIM has
recently been shown to mobilize MSCs migrating to bone defects
[46] or areas of spinal cord injury [47]. We therefore hypothesized
that if we combined SDF-1a with SIM, SIM might enhance the
chemotactic capability of SDF-1a and promote bone regeneration.

The purpose of this study was therefore to investigate the
cooperative effects of SIM and SDF-1a on the osteogenic and
migration capabilities of mesenchymal stem cells, and to construct
a cell-free bone tissue engineering system composed of SIM, SDF-
1a and scaffold.

2. Materials and methods

2.1. Isolation and maintenance of mouse BMMSCs

All materials were purchased from SigmaeAldrich (St. Louis, MO, USA) unless
otherwise stated. This study was approved by the Ethics Committee of the Peking
University Health Science Center, Beijing, China (PKUSSIRB-2013023).

Mice from the Institute of Cancer Research (ICR) were sacrificed at 6e8 weeks
old by CO2 asphyxiation and their femurs and tibiae were carefully cleaned of
adherent soft tissue. The tip of each bone was removed with a rongeur, and the
marrow was harvested by inserting a syringe needle (27-gage) into one end of the
bone and flushing with Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco) [48].
Cells were cultured in maintenance medium (Dulbecco’s Modified Eagle Medium
containing 10% fetal bovine serum, 100 U/mL penicillin G and 100 mg/mL strepto-
mycin) at 37 �C in an incubator with an atmosphere comprising 95% air and 5% CO2

with 100% relative humidity. All cell-based experiments were repeated at least three
times.

2.2. Cell proliferation assay

In cell proliferation assays, cells were cultured in maintenance medium (control
group) or maintenance medium with various concentrations of SIM and/or SDF-1a
(PeproTech Inc., NJ, USA). Cell number was determined using the cell-counting kit-8
(CCK8) according to the manufacturer’s instructions (Dojindo Laboratories, Kuma-
moto, Japan). Growth curves were drawn using the absorbance values (mean � SD,
n ¼ 4).

2.3. Cell differentiation assay

Cells were seeded in 24-well plates at a density of 1 � 104/cm2 in maintenance
medium alone or with various concentrations of SIM and/or SDF-1a. After 14 days of
culture, the osteogenic differentiation of the cells was evaluated by alkaline phos-
phatase (ALP) activity assays using an ALP kit according to the manufacturer’s
protocol.

2.4. Cell migration assay

The effect of SIM and/or SDF-1a on mouse BMMSC (mBMMSC) migration was
evaluated using a transwell migration assay [20]. Briefly, 1 �105 cells cultured for 14
days were loaded into the upper chamber of a 24-well transwell plate (Corning, pore
size 5 mm) and 600 mLmedium containing different concentrations of SIMwas added
to the lower chamber. Twenty-four hours later, the filter was gently removed and the
cells from the upper surface of the membranes were removed with a cotton swab.
Cells that migrated to the lower surface of the membrane were fixed with 4%
paraformaldehyde and stained for 10 min with 0.5% crystal violet. The number of
cells that had migrated into the lower chamber was counted in five randomly
selected microscopic fields (200�) per filter by blind evaluations performed twice
by two independent assessors.
2.5. Bone regeneration in vivo by scaffolds loaded with SDF-1a and SIM

2.5.1. Preparation of the drug-loaded poly(lactide-co-glycolide) (PLGA) scaffolds
In order to construct a cell-free bone tissue engineering compound containing

SDF-1a and SIM, processing solutions for the scaffolds were prepared as shown in
Table 1. Twenty-four pieces of 4-mm diameter, 2-mm high cylindrical PLGA scaffold
(lactide/glycolide: 75/25; Shandong Institute of Medical Instruments, China) were
prepared and then soaked in 40 mL of processing solution for 15 min before grafting
[49].

2.6. Animal experiments

Thirty-two 4-week-old, ICR mice were used in animal experiments. The mice
were divided into four groups: (1) PLGA scaffold only, (2) PLGA scaffold loaded with
SIM, (3) PLGA scaffold loaded with SDF-1a, and (4) PLGA scaffold loaded with SIM
and SDF-1a. All animals were anesthetized by i.p. administration of pentobarbital
sodium (7 mg/kg). A 1.5-cm sagittal incision was made on the scalp, and the
calvarium was exposed by blunt dissection. A 4-mm diameter critical-sized defect
was created at the left side of the calvarium by means of a trephine bur (Hager
Meisinger GmbH, Neuss, Germany) under low speed drilling and copious saline
irrigation. The periosteum of the defect region was removed carefully avoiding
damage to the dura mater and brain. Occasional bleeding was stopped and the
defect region was washed. The drug-loaded scaffolds were implanted into the de-
fects, and the incisions were closed with sutures. At 3, 5 and 7 days after implan-
tation, the animals were injected three times around the scaffold with 30 mL of the
drug solution originally loaded into the scaffold.

2.7. Sample harvesting for long-term in vivo experiments

To investigate the bone regeneration capability of each group, five mice in each
group were sacrificed by CO2 inhalation 6 weeks after implantation. The implants
and calvaria were carefully removed and sample preparation was performed as
described previously [41].

2.8. Micro-computed tomography (micro-CT) and image analysis

To show bone formation in situ, micro-CT scans were performed using a high
resolution Inveon Micro-CT (Siemens, Munich, Germany). The following experi-
mental settings were used: an X-ray voltage of 80 kVp, anode current of 500 mA and
an exposure time of 1500 ms for each of the 360 rotational steps. The images were
used to reconstruct tomograms with a Feldkamp algorithm, using a commercial
software package (Cobra EXXIM, EXXIM Computing Corp., Livermore, CA). Quanti-
fication of micro-CT images was then performed. New bone volume in the defects
was evaluated by quantifying pixels in these regions using Inveon Research Work-
place (Siemens, Germany).

2.9. HE staining and immunohistochemistry

All specimens were decalcified for 7 days in 10% EDTA (pH 7.4). Following
decalcification, the specimens were dehydrated and subsequently embedded in
paraffin. Sections (5 mm thickness) were stained with hematoxylin and eosin (HE).
Osteogenesis was evaluated by immunohistochemical (IHC) analysis for osteopontin
(OPN) and osteocalcin (OCN). To explore the mechanism of bone formation, IHC
staining for CD34 and BMP-2 was performed to analyze angiogenesis [50] and the
function of SIM.

2.10. Sample harvesting for short-term in vivo experiments

To explore the mechanism of bone formation, three mice in each group were
sacrificed by CO2 inhalation 1 week after implantation. The implants were separated
carefully from mouse calvaria and embedded in optimal cutting temperature
compound (Tissue-Tek; Sakura Finetek, Torrance, CA) and frozen sections for
immunofluorescence staining were prepared.

2.11. Chemotactic capability of SIM- and SDF-1a-loaded scaffold in vivo

Immunofluorescence staining of frozen sections with a series of antibodies was
used to determine the types of recruited cells [49]. MSCs were identified as stage-
specific embryonic antigen-4 (SSEA4)þ/CD45� [49e51]. Antibody staining was
visualized by immunofluorescence with FITC- and Texas Red-conjugated secondary
antibodies (Cell Signaling Technology Inc, USA). Cell nuclei were stained with 40 ,6-
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diamino-2-phenylindole (DAPI). Stained sections were visualized using a Leica mi-
croscope and imaged with a CCD camera (Retiga EXi; Qimaging, Surrey, BC, Canada).
The number of SSEA4þ/CD45� MSCs in each group was counted in five randomly
selected merged microscopic images by blind evaluations performed twice by two
independent assessors.

2.12. Statistical analysis

Data are expressed as the mean � standard deviation and were analyzed using
SPSS software. One-way analysis of variance followed by Fisher’s least significant
difference test was performed. For all tests, statistical significance was accepted at P-
values lower than 0.05.

3. Results

3.1. The effect of SIM and SDF-1a on the proliferation and
differentiation of mBMMSCs

The effects of SIM at different concentrations on the prolifera-
tion of mBMMSCs proliferation are shown as growth curves (Fig. 1).
CCK-8 assays demonstrated that SIM at 0.5 mM slowed cell growth,
and cell proliferationwas markedly inhibited at SIM concentrations
higher than 0.5 mM. SIM concentrations of less than or equal to
0.2 mM had a negligible adverse effect on cell proliferation compared
with the control group.

ALP activity in all SIM groups was significantly increased
compared with the control group. In comparison with lower SIM
concentrations, 0.2 mM SIM stimulated significantly higher levels of
ALP activity in mBMMSCs.

Next, we tested the effects of SDF-1a on the proliferation and
differentiation of mBMMSCs and found that SDF-1a at concentra-
tions of 50, 100, 200 and 400 ng/ml had no significant effects on cell
proliferation and osteogenic differentiation.
Fig. 1. The effect of SIM and SDF-1a on the proliferation and differentiation of mBMMSCs. (A)
in different concentrations of SIM. (C) Growth curves and (D) ALP activity of mBMMSCs cu
DP < 0.05 compared with other SIM groups.
3.2. The effect of SIM on chemotactic capability of SDF-1a in vitro

As has been reported inmany studies, we found that SDF-1a had
a positive effect on the migration capacity of mBMMSCs. At SDF-1a
concentrations of 50, 100, 200 and 400 ng/ml the migration ca-
pacity of mBMMSCs was significantly increased compared with
control groups (Fig. 2). There was no significant difference between
the 200 and 400 ng/ml SDF-1a groups. Interestingly, we found that
SIM at concentrations of 0.1 and 0.2 mM also significantly increased
cell migration by 30.7% and 36.0%. More importantly, when com-
bined with 0.2 mM SIM, the chemotactic capability of SDF-1a was
further enhanced. The migration capacities of mBMMSCs cultured
in 50 ng/ml SDF-1aþ SIM,100 ng/ml SDF-1aþ SIM, 200 ng/ml SDF-
1a þ SIM and 400 ng/ml SDF-1aþ SIMwere significantly increased
by 63.3%, 63.5%, 91.1% and 80.0% compared to the corresponding
groups without SIM.
3.3. Cooperative effect of SIM and SDF-1a on bone regeneration in
critical-sized calvarial defects

3.3.1. Radiological assessment of bone formation
To assess new bone formation in the bone defects, micro-CT was

performed and the results are shown in Fig. 3A. In the control
group, scanning revealed an almost complete lack of healing in
empty defects. In the SIM group, small numbers of high density
spots were observed. In the SDF-1a group, small peninsulas of bone
nodule formation along themargins of the defect were observed. In
the SIM þ SDF-1a group, tissues with markedly greater bone
density were observed in the defects. Quantification of micro-CT
images (Fig. 3B) provided further evidence that significantly more
Growth curves, measured using a CCK-8 kit, and (B) ALP activity of mBMMSCs cultured
ltured on different concentrations of SDF-1a. *P < 0.05 compared with control group;



Fig. 2. The in vitro chemotactic capability of SDF-1a was enhanced when combined with SIM. (A) SDF-1a had positive effect on the migration capacity of mBMMSCs in transwell
assays. (B) SIM at concentrations of 0.1 and 0.2 mM also increased cell migration. (C) The chemotactic capability of SDF-1a could be further significantly enhanced when combined
with 0.2 mM SIM. *P < 0.05; N.S., not significant.
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bonewas formed in the SIMþ SDF-1a group than in the other three
groups (P < 0.05).

3.3.2. Histological assessment of bone formation
HE staining of representative sections from each group is shown

in Fig. 4A. In the control and SIM groups, the defect area was
occupied by connective tissue, and no typical bone tissue was
observed. In the SDF-1a group, more bone-like tissues could be
seen especially near the border of the bone defect. In the
SIM þ SDF-1a group, markedly greater amounts of bone-like tissue
formed not only along the border but also in the center of the bone
defect.

The results of IHC staining are shown in Fig. 4B. We found that
the osteogenic markers OPN and OCN were highly expressed in
both the SDF-1a group and the SIM þ SDF-1a group. Moreover the
SIM þ SDF-1a group showed higher expression of OPN and OCN
than the SDF-1a group.
3.4. Cooperative effect of SIM and SDF-1a on recruitment of MSCs
in vivo

Immunofluorescence staining for SSEA-4 (green) and CD45
(red) in histological sections is shown in Fig. 5A. SSEA-4-positive
and CD45-negative (SSEA-4þ/CD45�) cells were considered to be
MSCs [49e51]. The control group and the SIM group had very low
engraftment of MSCs, whereas the SDF-1a group and the
SIM þ SDF-1a group had greater levels of MSC engraftment.
Moreover, there was greater recruitment of MSCs in the
SIM þ SDF-1a group than in the any of the other three groups
(P < 0.05).

3.5. Cooperative effect of SIM and SDF-1a on angiogenesis in vivo

IHC staining of tissue sections from the bone defect regions for
CD34 showed that markedly more CD34-positive vascular



Fig. 3. SDF-1a combined with SIM increased bone formation in critical-sized calvarial defects in mice. Mice were treated with PLGA scaffolds alone (control) or loaded with SIM,
SDF-1a or a combination of SIM þ SDF-1a. (A) Micro-CT images of bone formation in each group after 6 weeks. (B) Quantitative comparison of new bone volume among the
different groups. *P < 0.05.
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endothelium cells were present in the SIM þ SDF-1a group than in
the other three groups (Fig. 6).

3.6. The effect of SIM on expression of BMP-2 in newly-formed bone
tissue

IHC staining for BMP-2 in typical newly-formed bone tissue
from the SDF-1a and the SIM þ SDF-1a groups demonstrated a
higher level of expression of BMP-2 in the SIM þ SDF-1a group
(Fig. 7). No typical new bone structure was observed in either the
control or SIM groups.

4. Discussion

In order to investigate the potential for bone formation by cell
homing without cell delivery, a tissue-engineered bone system



Fig. 4. Histological assessment of bone formation in each group. (A) HE staining. (B) Immunohistochemical staining for the osteogenic markers osteopontin (OPN) and osteocalcin
(OCN).
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composed of PLGA scaffold loaded with SDF-1a and SIM was con-
structed in this study. The application of this cell-free tissue engi-
neering system means that isolation and ex vivo manipulation of
cells can be avoided, and bone can be regenerated more efficiently
and with less expense. To fully explore the bone regeneration
capability and the underlying mechanisms of this new cell-homing
approach, we carried out a series of systematic experiments in this
study. Firstly, we investigated the optimal concentrations of SIM
and SDF-1a for proliferation, osteogenesis and migration of
mBMMSCs in vitro, and secondly, we demonstrated that bone for-
mation in critical-sized calvarial defects in the mouse was signifi-
cantly promoted by PLGA scaffold loaded with SDF-1a and SIM.
Interestingly, we also found that SIM enhanced the chemotactic
capability of SDF-1a in vitro and in vivo.
4.1. The effect of SDF-1a on the migration of mBMMSCs in vitro

It has been reported that the number of migrating MSCs in-
creases in a dose-dependent manner at concentrations of 5e
500 ng/ml [20,26]. In this study, we first investigated the in vitro
chemotactic potency of SDF-1a and confirmed that SDF-1a pro-
moted the migration of mBMMSCs in a dose-dependent manner.
SDF-1a is the sole ligand for the chemokine receptor CXCR4 [52].
The interaction of SDF-1a with CXCR4 mediates homing of MSCs.
Upon binding of SDF-1a to CXCR4, the receptor is stabilized into a
conformation that activates the heterotrimeric G protein [53],
which can regulate a wide variety of downstream pathways,
including activation of phospholipase C and phosphoinositide-3
kinase, and inactivation of adenylyl cyclase. Signaling through the
phosphoinositide-3 kinase pathway leads to the activation of p21-
activated kinase (PAK) and cell polarization, the first step in
migration. Phosphoinositide-3 kinase and various tyrosine kinases
that activate Akt and Cdc42 are involved in actin polymerization.
Phospholipase C-mediated events, such as calcium release and
protein kinase C activation, as well as focal adhesion kinase, pyk2,
paxillin and extracellular signal-regulated kinase are important in
the adhesion process, leading to cell migration [54e58].
4.2. The effect of SIM on proliferation, osteogenesis and migration of
mBMMSCs in vitro

To explore the effects of SIM on the proliferation and osteogenic
differentiation of mBMMSCs in vitro, we performed cell prolifera-
tion and differentiation assays as we have previously reported [41],
because cells with a different origin or from different species may
react in different ways to SIM over a range of concentrations. In this
study, we found that higher concentrations of SIM inhibited cell
proliferation, but when the concentration was 0.2 mM or lower, it
had a negligible effect on cell proliferation. We then tested ALP
activity, a common marker used in osteogenic differentiation
studies, and found that SIM increased ALP activity inmBMMSCs in a
dose-dependent manner. Taking the results of cell proliferation and
differentiation assays together, 0.2 mM SIM was determined to be
the optimal acting concentration for mBMMSCs in this study.

The original intention of this study was to use SIM as an oste-
ogenic factor in our cell-free bone tissue engineering system.



Fig. 5. Immunofluorescence staining showed that SDF-1a combined with SIM recruited more SSEA-4þ/CD45� MSCs in vivo. (A) Immunofluorescence staining of the four groups.
(B) Quantitative analysis of the numbers of recruited MSCs in the four groups. *P < 0.05.
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Interestingly, however, we found that SIM at certain concentrations
increased themigration of mBMMSCs. It has beenwell documented
that SIM increases the osteogenic capability of MSCs [59]. However,
the effects of SIM on the migration and homing of MSCs are a more
recent finding. Cui et al. [46] reported that local application of SIM
led to recruitment of autogenous osteogenic stem cells. Han et al.
[47] reported that SIM mobilized the migration of BMMSCs to
injured areas after spinal cord injury in rat. Our results were
consistent with these studies. More importantly, when we com-
bined SIM and SDF-1a, we found that the chemotactic capability of



Fig. 6. IHC staining showed greater numbers of CD34-positive vascular endothelium cells (red arrows) in the SIM þ SDF-1 group than in the other groups. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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SDF-1a was markedly enhanced. This cooperative effect between
SIM and SDF-1a had new implications for the development of
tissue-engineered bone systems. To confirm this cooperative effect
and explore the underlying mechanisms we conducted further
in vivo experiments.

4.3. Bone formation in a cell-free tissue-engineered bone system in
mouse critical-sized calvarial defects, and preliminary exploration of
the underlying mechanism

The cell-free tissue-engineered bone system in this study is
composed simply of PLGA, SDF-1a and SIM. PLGA, as a copolymer of
poly-lactic acid (PLA) and poly-glycolic acid (PGA), has beenwidely
used in the medical field because it has good biodegradation
properties and mechanical strength. Moreover, the clinical
Fig. 7. IHC staining for BMP-2 in typical newly-formed bone tissue showed higher expression
was observed in either the control or SIM groups.
application of PLGA has been approved by the FDA [60]. Another
reason for choosing this scaffold in our study is because PLGA is a
radiolucent material and once radiopaque areas develop, we know
that there is mineralized tissue formation.

To investigate the in vivo bone formation capability of this cell-
free tissue-engineered bone system, critical-sized [3,41] calvarial
defects (4-mm diameter) were made in four groups of mice and
filled with PLGA, PLGA þ SIM, PLGA þ SDF-1a or
PLGA þ SIM þ SDF-1a. Six weeks after implantation, we observed
that our cell-free tissue-engineered bone system
(PLGA þ SIM þ SDF-1a) increased non-collagenous protein
expression in the bone matrix and formed markedly more bone
tissue than was seen in other groups.

To further explore the mechanism of bone formation in the cell-
free tissue-engineered bone system, we studied MSC homing,
of BMP-2 in the SIM þ SDF-1 group than the SIM group. No typical new bone structure
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angiogenesis and BMP-2 expression in vivo. As reported by The-
venot et al. [49], we detected SSEA4þ/CD45�MSCs in the scaffold 1
week after implantation into the calvarial defect area. Because we
used a cell-free system, the MSCs in the implantation site were
assumed to come from circulating or surrounding MSC resources.
Consistent with the in vitro experiments, we found that the
SIMþ SDF-1a group recruited more MSCs than other groups. These
in vivo results confirmed that SIM increased the chemotactic
capability of SDF-1a and enhanced MSC homing. It is well recog-
nized that MSCs play essential roles in tissue regeneration and are
they considered to be the basis of bone tissue engineering. There-
fore, the cooperative effect of SIM and SDF-1a on MSC recruitment
may be one explanation for the improved bone regeneration in
critical-sized calvarial defects using the cell-free tissue-engineered
bone system.

Mundy et al. discovered that statins (lovastatin and simva-
statin) stimulate high expression of BMP-2 in osteoblasts, and can
effectively stimulate bone formation [61]. We therefore tested the
expression of BMP-2 in the newly-formed bone tissue and found
that it was higher in the SIM þ SDF-1a group than in the SDF-1a
group. It has been reported that BMP-2 can directly induce oste-
oblastic differentiation by driving the expression of Runx2 and
vice versa [62]. BMP-2 expression may therefore also play an
important role in the improved bone regeneration seen in critical-
sized calvarial defects using the cell-free tissue-engineered bone
system.

Angiogenesis and vascularization are essential steps for the
survival of engineered grafts after implantation [63]. We also
studied the angiogenesis and vascularization capability of the cell-
free tissue-engineered bone system by immunohistochemical
staining of CD34þ vascular endothelium cells [50]. We found that
improved vascularization was observed in the SIM þ SDF-1a group
compared to the other groups. It has been reported that SDF-1a
can recruit endothelial progenitor cells and enhance vasculariza-
tion in vivo [64]. Moreover, SIM can specifically increase the
expression of BMP-2, which has also been shown to stimulate the
expression of vascular endothelial growth factor (VEGF) and pro-
mote angiogenesis [65,66]. These cooperative effects on angio-
genesis and vascularization may lead to improved bone
regeneration.

Therewere some limitations to our study. Firstly, the application
of SIM and SDF-1a in this study was simply by scaffold infusion and
injection around the implantation site. In further studies, we plan
to introduce a slow-release mechanism to improve the perfor-
mance of our cell-free tissue-engineered bone system. Secondly,
the exact mechanisms behind the cooperative effect of SIM and
SDF-1a need to be further investigated on the basis of our current
study.
5. Conclusions

SIM enhances the chemotactic capability of SDF-1a, and the cell-
free bone tissue engineering system composed of SIM, SDF-1a and
scaffold promotes bone regeneration in critical-sized calvarial de-
fects in the mouse.
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