Hypersensitive mAChRs are Involved in the Epiphora of Transplanted Glands
C. Ding, X. Cong, Y. Zhang, N.Y. Yang, S.L. Li, L.L. Wu and G.Y. Yu
J DENT RES 2014 93: 306 originally published online 3 January 2014
DOI: 10.1177/0022034513519107

The online version of this article can be found at:
http://jdr.sagepub.com/content/93/3/306

Published by:
SAGE
http://www.sagepublications.com

On behalf of:
International and American Associations for Dental Research

Additional services and information for Journal of Dental Research can be found at:

Email Alerts: http://jdr.sagepub.com/cgi/alerts
Subscriptions: http://jdr.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

>> Version of Record - Feb 19, 2014
OnlineFirst Version of Record - Jan 3, 2014
What is This?
Hypersensitive mACHRs are Involved in the Epiphora of Transplanted Glands

INTRODUCTION

Dry eye syndrome is a relatively common ophthalmologic disorder characterized by reduced or lack of tear production with serious complications, including corneal damage and even loss of sight (Sieg et al., 2000). Growing evidence suggests that autologous transplantation of submandibular gland tissue with insertion of Wharton’s duct into the upper conjunctival fornix is a novel way to treat severe dry eye syndrome (Murube-del-Castillo, 1986; Geerling et al., 1998; Sieg et al., 2000; Yu et al., 2004), while transplantation of minor salivary glands has also been reported (Geerling et al., 2008a). The success rate of this procedure varied from 80% to 87% (Yu et al., 2004; Geerling et al., 2008b). However, a major concern is the unregulated changes in the rate of fluid secretion from glandular tissue after transplantation. Initially, secretion rate declines from 5 days to 3 months post-surgery (Yu et al., 2004), but excessive secretion, or epiphora, appears in more than 40% of patients within 3 to 6 months after surgery. Patients with severe epiphora may suffer from mild discomfort at rest and at room temperature but may experience worsened symptoms upon exercise or under increased temperature (Qin et al., 2013). These patients may require secondary surgeries to partially reduce the transplanted tissue. Therefore, understanding the mechanism of altered secretion by the denervated transplanted gland is critical to regulate secretion after transplantation.

Fluid and electrolyte secretion from salivary glands is primarily evoked by the action of acetylcholine on muscarinic acetylcholine receptors (mACHRs) and norepinephrine on α-adrenoceptors (Baum, 1993; Melvin et al., 2005). In rat parotid glands, activation of mACHRs leads to the formation of inositol 1, 4, 5-trisphosphate (IP₃), which subsequently increases the intracellular calcium ([Ca²⁺]) level and mediates water secretion via increased aquaporin-5 (AQP5) expression in the apical membrane and by AQP5 disassociation from lipid rafts (Ishikawa et al., 1998, 2005).

By establishing a rabbit submandibular gland autotransplantation model, we have demonstrated that the expression of mACHRs and AQP5 decreased during the early phase after transplantation, and that carbachol, a mACHR agonist, promotes fluid secretion by increasing mACHR expression (Shi et al., 2010). Although the presence of ganglionic cells and nerve fibers in transplanted glands was observed previously (Geerling et al., 2008b), it is still unknown whether mACHRs are involved in epiphora development at a later stage.

KEY WORDS: submandibular gland, secretion, transplantation, muscarinic acetylcholine receptor, aquaporin 5, lipid raft.

Received August 19, 2013; Last revision October 24, 2013; Accepted December 10, 2013

© International & American Associations for Dental Research
In the present study, we investigated the changes in mACHR expression and its downstream signaling events in epiphora-transplanted glands. We also explored possible mechanisms of mACHR-induced AQP5 trafficking in submandibular glands.

MATERIALS & METHODS

Human Participants and Ethics

Transplanted submandibular gland samples were collected from 18 individuals (ages 23-55 yr; 12 men) who underwent partial gland reduction for epiphora within 3 to 12 months (mean, 9.83 months) after transplantation. The flow rate of epiphora glands was 53 ± 26.7 mm/5 min. Because we could not obtain samples from patients with suitable secretion (10-15 mm/5 min), the submandibular glands from 18 individuals (ages 45-54 yr; 10 men) who underwent functional neck dissection for primary squamous cell carcinoma without irradiation and chemotherapy were used as controls. All control samples were confirmed to be histologically normal. The research protocol was approved by the Peking University Institutional Review Board, and prior to tissue collection, all participants signed an informed consent document.

Submandibular Gland Tissue and Cell Preparation

The submandibular gland samples were transported to the laboratory within 30 min after extraction in 4°C Krebs-Ringer Hepes (KRH) solution (containing, in mM, 120 NaCl, 5.4 KCl, 1 CaCl2, 0.8 MgCl2, 11.1 glucose, 20 Hepes, pH 7.4), aerated with 95% O2. For cell preparation, gland tissue was minced in Ca2+-free KRH solution on ice, and digested with 100 units/mL of collagenase (Worthington, Lakewood, NJ, USA) and 1% BSA free KRH solution on ice, and digested with 100 units/mL of collagenase (Worthington, Lakewood, NJ, USA) and 1% BSA.

RT-PCR

Total RNA was purified with Trizol (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. cDNA was prepared from 2 μg of total RNA with a RevertAid First Strand cDNA Synthesis Kit (Promega, Madison, WI, USA). The primer sequences were: M1-mAChR (NM_000738), 5′-GAGGGCTC ACCAGAGACTCTTCT-3′ and 5′-GTCTCGGGAACACAGTCCC TTG-3′; M3-mAChR (NM_000740), 5′-CTTCTCCAAGCTTC CCATCCA-3′ and 5′-ACAGGGTGACTGGGACACACT-3′; M5-mAChR (NM_012125), 5′-ACCCCTGTCCCTCAAGTGTC CT-3′ and 5′-ACAGGGTGACTGGGACACACT-3′; AQP5 (NM_001651), 5′-CTGTCATATTGGCGCTTGTGC-3′, and 5′-GGCTCACATGCTGCTTTGATG-3′; and GAPDH (NM_001202), 5′-GATGGCACTGGGTACACT-3′ and 5′-GATGGTTCGACTGGGACACACT-3′. The band densities were quantified by Leica 550iW image system (Leica, Mannheim, Germany).

Preparation of Triton X-100 Soluble and Insoluble Membrane Fractions

Triton X-100 soluble and insoluble membrane fractions were prepared as previously described (Ishikawa et al., 2005). Gland tissue was homogenized with a polytron homogenizer in cold lysis buffer (containing 10 mM KCl, 1.5 mM MgCl2, 10 mM HEPES, and 5 μM phenylmethylsulfonyl fluoride, pH 7.4) and centrifuged at 5,600 × g for 10 min at 4°C. The supernatant was centrifuged at 15,000 × g for 1 hr, and the pellet was collected and solubilized with 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 5 mM EDTA containing 1% Triton X-100. Finally, soluble and insoluble fractions were obtained by centrifugation at 20,000 × g for 30 min. The soluble and insoluble fractions were considered as non-lipid rafts and lipid rafts, respectively.

Gradient Density Flotation Assay

Gradient density flotation assay was performed to separate calveolae and non-calveolae fractions as previously described (Fu et al., 2010). Briefly, the homogenate was solubilized with 1.6 mL Na2CO3 (500 mM, pH 11.0) and sequentially added to 1.6 mL 90% sucrose (wt/vol), 3.2 mL 35% and 3.2 mL 5% sucrose. Gradients were centrifuged at 260,000 × g for 18 hrs at 4°C. Then, 12 fractions (0.8 mL/each) were collected from the top to the bottom (fractions 1-12) of the gradients. Fractions 4 and 5 and fractions 9-12 were considered as calveolae and non-calveolae fractions, respectively.

Western Blot Analysis

The gland tissue was homogenized with lysis buffer (containing 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 0.1% SDS, and 0.1% sodium deoxycholate, pH 7.2) by means of a polytron homogenizer as previously described (Ding et al., 2011). The homogenate was centrifuged for 10 min at 4°C, and protein concentration was measured by the Bradford method (Ding et al., 2011). The protein extracts (40 μg) were separated on 12% SDS-PAGE, transferred to polyvinylidene fluoride membranes, and probed with antibodies to M1-mAChR, M3-mAChR, AQP5, flotillin-2, and caveolin-1 (SC-7470, SC-9108, SC-9890, SC-25507, SC-894; Santa Cruz Biotech, Delaware, CA, USA) at 1:500 dilutions in TBS-T (20 mM Tris, 137 mM NaCl, 0.1% Tween-20, pH 7.4). Blots were then probed with horseradish-peroxidase-conjugated secondary antibodies (1:8,000; ZSGB-BIO, Beijing, China) and developed in an enhanced chemiluminescence reagent (Pierce Biotechnology, Rockford, IL, USA). Anti-GAPDH antibody (M20006, 1:5,000; Abmart, Shanghai, China) was used as a loading control.

Determination of IP3 Content

The content of IP3 was determined by the use of a 3H-labeled IP3 assay kit (Amersham, Buckinghamshire, UK) according to the manufacturer’s instructions.

Measurement of [Ca2+]i

Cells were loaded with Ca2+-sensitive fluorescent probe fluo-3/AM (Biotium, Hayward, CA, USA) for 30 min at 37°C. Excitation was performed at 488 nm, and the emission signals were collected through a 515-nm barrier filter. Images were taken every 5 sec, and quantitated by average fluorescence intensities in 5 randomly selected cells in each time-point from 6 control and transplanted glands (Leica TCS NT, Wetzlar, Germany).
Immunohistochemistry, Immunofluorescence, and Quantitative Analysis of AQP5

Frozen sections were incubated with anti-AQP5 antibody (1:100) overnight at 4°C. Normal goat IgG was used as a negative control. Images were captured by light microscopy (Q550CW, Leica, Mannheim, Germany) and confocal microscopy (Leica TCS SP5, Heidelberg, Germany) with sections of 334-nm optical thickness. The fluorescence intensities of AQP5 in 9 randomly selected acini in each section from 6 control and transplanted glands were averaged. Data were displayed as the AQP5 intensity in apical and lateral membrane areas in acini, and their ratio to total intensity of AQP5 in acini.

Statistical Analysis

Data were expressed as means ± SD. Statistical analysis were performed by unpaired Student’s t test. Any p < .05 was considered statistically significant.

RESULTS

mAChRs Expression and IP3 Content in Submandibular Glands

Compared with controls, mRNA expression of M1- and M3-mAChR in transplanted glands was increased by 39.3% and 112.3% (Figs. 1A, 1B), respectively. Protein expression of M1- and M3-mAChR was increased by 60.8% and 41.3%, respectively (Figs. 1C, 1D).

Figure 1. Expression of mAChRs and IP3 content in submandibular glands. (A, B) Expression of M1- and M3-mAChR mRNA was detected by RT-PCR. (C, D) Protein expression of M1- and M3-mAChR was detected by Western blot analysis with the same gland tissues. (E) M5-mAChR mRNA expression. Quantification was normalized to GAPDH expression. (F) IP3 content in submandibular glands. C, control gland; T, transplanted gland with epiphora. Values are means ± SD from 6 independent experiments. *p < .05 and **p < .01 compared with controls.

Figure 2. Effect of carbachol on intracellular Ca2+ mobilization in acinar cells of submandibular gland. (A) Representative fluorescence image (left) and time-course (right) of fluo-3/AM-loaded cells before and after stimulation with 1 μM carbachol. (B) Representative fluorescence images (left) and time-course (right) of 5 μM carbachol stimulation in control and transplanted gland cells. (C) Representative fluorescence images (left) and time-course (right) of submandibular acinar cells stimulated by 10 μM carbachol. Arrows denote the time of carbachol application. C, control gland; T, transplanted gland; CCh, carbachol. *p < .05 compared with controls.
In contrast, the expression of M5-mAChR mRNA, which served as a negative control, did not differ between control and transplanted glands (Fig. 1E). The content of IP3 in epiphora glands was increased by 31.72% compared with that in controls (Fig. 1F).

Effect of Carbachol on \([Ca^{2+}]_i\) Mobilization in Isolated Acinar Cells

Ca\(^{2+}\) was an important molecule in mAChR-regulated secretion. In isolated submandibular cells, 1 \(\mu\)M carbachol had no effect on \([Ca^{2+}]_i\) (Fig. 2A). A 5-\(\mu\)M quantity of carbachol caused an increase in \([Ca^{2+}]_i\) of transplanted gland cells, but not in control cells (Fig. 2B). A 10-\(\mu\)M quantity of carbachol evoked a rapid and significant increase in \([Ca^{2+}]_i\) in both cells, while the increase in epiphora gland cells was 13.3% higher than that in controls (Fig. 2C).

Expression of AQP5 in Submandibular Glands

AQP5 plays an important role in the rapid water movement in salivary glands. The levels of AQP5 mRNA and protein in epiphora glands were not different from those in controls (Figs. 3A, 3B). AQP5 was observed in both the apical and lateral membrane areas of the control and transplanted acinar cells with continuous and uniform distribution (Figs. 3C, 3D). This was consistent with subcellular localization of AQP5 in acinar cells reported previously (Gresz et al., 2001; Steinfeld et al., 2001). Furthermore, immunofluorescence staining and quantitative analysis showed that AQP5 distribution in apical and lateral membrane areas and its ratio to total AQP5 did not change in epiphora glands compared with controls (Figs. 3F-3J).

Expression of AQP5 in Lipid Raft and Caveolae Fractions

To characterize AQP5 subcellular localization, we isolated lipid and non-lipid rafts, and used flotillin-2, a lipid-raft-associated integral membrane protein, as a specific marker of lipid rafts (Galbiati et al., 2001). AQP5 was mainly expressed in lipid rafts in control glands. However, in epiphora tissues, AQP5 levels were reduced in lipid rafts and increased in non-lipid rafts (Fig. 4A). The ratio of AQP5 in non-lipid rafts to total AQP5 (in lipid and non-lipid rafts) was significantly increased in epiphora glands (Fig. 4B). To reveal the possible effect of mAChR activation in AQP5 trafficking between lipid and non-lipid rafts, we added carbachol (10 \(\mu\)M) to the cultured submandibular tissue for 30 sec. The ratio of AQP5 in non-lipid rafts to total AQP5 was markedly increased compared with that in the untreated controls (Figs. 4C, 4D).

The caveolae are a subclass of lipid rafts (Schlegel et al., 2000). To further characterize subcellular distribution of AQP5, we isolated caveolae with caveolin-1 as a specific marker. The
ratio of AQP5 in non-caveolae to total AQP5 (in caveolae and non-caveolae fractions) was significantly increased in epiphora glands. Moreover, carbachol increased AQP5 levels in non-caveolae fraction (Figs. 4E-4H). Double-immunofluorescence revealed reduced co-localization of AQP5 and flotillin-2 in carbachol-treated glands, and AQP5 in the apical and lateral membrane increasingly disassociated from flotillin-2 (Fig. 4I).

DISCUSSION

The present study demonstrated that the expression of M1- and M3-mAChR was up-regulated and the content of IP3 and carbachol-induced [Ca2+]i mobilization was increased in transplanted submandibular glands with epiphora. AQP5 was mainly distributed in lipid rafts in cultured submandibular glands under
unstimulated conditions, and activation of mAChRs by carbachol induced AQP5 trafficking from lipid rafts to non-lipid rafts. Consistently, this AQP5 redistribution to non-lipid rafts was seen in epiphora-transplanted glands. Taken together, hypersensitive mAChRs might be responsible for the epiphora of transplanted glands by modulating AQP5 trafficking.

Salivary gland fluid secretion is mainly regulated by parasympathetic autonomic nerves via mAChRs (Gautam et al., 2003; Ryberg et al., 2008). A lack of acetylcholine and downregulation of mAChRs were found to contribute to early hypofunctional transplanted glands (Shi et al., 2010). Based on the role of mAChRs, pilocarpine has been successfully used to treat xerostomia (Wiseman and Faulds, 1995; Fox et al., 2001). However, the role of mAChRs in epiphora glands remains unknown. Here, we found that M1- and M3-mAChR expression, IP$_3$ content, and [Ca$^{2+}$], response to carbachol were increased in epiphora glands, which suggested that up-regulation of M1- and M3-mAChRs, and thereby enhanced sensitivity to cholinergic stimulation, may be important for epiphora development in transplanted submandibular glands.

The expression and location of AQP5 partly reflect its function in mediating submandibular gland secretion (Ishikawa et al., 1998; Shi et al., 2010). However, the expression and distribution of AQP5 in the apical and lateral membrane were not altered in epiphora glands. The plasma membranes of mammalian cells are comprised of different domains with various lipid and protein compositions. Lipid rafts are defined as glycosphingolipid- and cholesterol-enriched microdomains and are involved in membrane sorting, trafficking, and signal transduction (Harder and Simons, 1997). AQP5 distributes in the intracellular lipid rafts under unstimulated condition, and it dissociates from lipid rafts and trafficks to non-lipid rafts via intracellular Ca$^{2+}$ signaling when M3-mAChR was activated by cevimeline, resulting in fluid secretion in the interlobular duct cells of rat parotid AQP5 distributed in the intracellular lipid rafts under unstimulated conditions (Ishikawa et al., 2005). The defect of AQP5 trafficking from lipid rafts to non-lipid rafts in acinar and duct cells mediates rat diabetic xerostomia (Wang et al., 2011). These studies suggested that AQP5 distribution in lipid and non-lipid rafts is an important and specific indicator of AQP5 function. Here, AQP5 mainly co-localized with flotillin-2 in human submandibular glands under unstimulated conditions. The level of AQP5 in non-lipid rafts was increased in epiphora and carbachol-treated glands. Distribution changes in lipid rafts reflected re-arrangement of floating lipid platforms within the membrane, and mAChR-induced trafficking of AQP5 out of lipid rafts may be an essential step in the modulation of AQP5 function.

Certain subtypes of mAChRs and AQP5 are localized in caveolin-rich membrane microdomains (Okamoto et al., 1998; Zheng and Bollinger Bollag, 2003). Exposure to hypertonic solution triggered a reversible translocation of AQP1 between caveolae fraction and the cytosol in rat cardiac myocytes (Page et al., 1998). In rabbit pulmonary tissue, increased AQP1 in caveolae has a potential role for mechanotransduction in developing interstitial edema (Palestini et al., 2003). However, AQP5 distribution in caveolae and its role in mAChR-induced submandibular gland secretion remained unknown. Our results showed that AQP5 localized in both caveolae and non-caveolae fractions in submandibular glands under unstimulated condition. Upon carbachol treatment, AQP5 was trafficked to non-caveolae fractions, which suggested that activation of mAChR mediated AQP5 redistribution in human submandibular glands. Subsequently, AQP5 trafficking-induced secretion in transplanted glands might lead to epiphora after long-term transplantation.

In summary, our studies proposed the following model for epiphora development in the transplanted submandibular gland: M1- and M3-mAChRs were up-regulated in epiphora glands; the hypersensitive mAChRs would then induce AQP5 trafficking out of lipid rafts, resulting in excessive gland secretion. Our findings shed light on the secretory mechanism of submandibular glands and identify mAChRs as a potential therapeutic target to control epiphora after long-term submandibular gland transplantation.

ACKNOWLEDGMENTS

This study was supported by grants from the National Natural Science Foundation of China (Nos. 81200799 and 81271161). The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

REFERENCES

