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Abstract
Oligodontia is defined as the congenital absence of six or more permanent teeth, excluding

the third molars. Oligodontia may contribute to masticatory dysfunction, speech alteration,

aesthetic problems and malocclusion. Numerous gene mutations have been association

with oligodontia. In the present study, we identified a de novo AXIN2missense mutation

(c.314T>G) in a Chinese individual with non-syndromic oligodontia. This mutation results in

the substitution of Val at residue 105 for Gly (p.Val105Gly); residue 105 is located in the

highly conserved regulator of G protein signaling (RGS) domain of the AXIN2 protein. This

is the first report indicating that a mutation in the RGS domain of AXIN2 is responsible for

non-syndromic oligodontia. Our study supports the relationship between AXIN2mutation

and non-syndromic oligodontia and extends the mutation spectrum of the AXIN2 gene.

Introduction
Tooth agenesis, the congenital lack of one or more permanent and/or deciduous teeth, is a
well-recognized morphologic anomaly in humans. The absence of one to six teeth (excluding
the third molars), more than six teeth (excluding the third molars), and the complete absence
of teeth have been termed hypodontia, oligodontia, and anodontia, respectively [1]. Tooth
agenesis can occur either as isolated findings or as part of a syndrome [2]. Both environmental
and genetic factors can cause tooth agenesis, with genetic factors representing by far the most
common cause of tooth agenesis [3].

Numerous genes have been implicated in tooth development and in theory, any of these
genes may cause tooth agenesis. To this day, mutations in nine genes (MSX1, PAX9, AXIN2,
WNT10A, EDA, EDAR, EDARADD, NEMO and KRT17) have been associated with non-syn-
dromic oligodontia [4–13]. The transcription factor genesMSX1 and PAX9 were the first
and second genes to be identified in non-syndromic oligodontia [7,14]. The MSX1 and PAX9
proteins are responsible for the interaction between dental tissues and are essential for the
establishment of the odontogenic potential of the mesenchyme [15]. AXIN2 is an intracellu-
lar antagonist of Wnt signaling and WNT10A is a member of the Wnt family. Both AXIN2
andWNT10A can cause non-syndromic oligodontia [16–17]. EDA is a well-known gene that
causes ectodermal dysplasia; however, several studies also reported that mutations in EDA
can cause non-syndromic oligodontia[4,9,18–19]. EDARADD is a downstream signaling
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mediator of EDA and one study reported that a mutation in this gene led to non-syndromic
oligodontia[6].

In the present study, we investigated six genes (MSX1, PAX9, AXIN2,WNT10A, EDA and
EDARADD) in a patient with sporadic non-syndromic oligodontia. Finally, we identified a de
novo AXIN2missense mutation, which was located in a highly conserved region of the encoded
protein.

Materials and Methods

Study Individuals and Samples
Subjects of this study were of Chinese descent. The 8-year-old male was recruited from
among the patients referred to the Peking University School of Stomatology (the 3rd Dental
Center for diagnostic evaluation and treatment of oligodontia). A pedigree was constructed
by clinical examination of available family members and through interviews. An experienced
dentist determined the status of dentition through oral and panoramic radiographic exami-
nations for the proband and his parents. Peripheral blood samples were taken from the pro-
band and his parents, in addition to 100 unrelated healthy individuals who were not affected
with tooth agenesis or other craniofacial abnormalities (control group). Written informed
consent was obtained from all the participants and the parents on the behalf of the minors or
children participants. The study protocol and subject consent were approved by the Institu-
tional Review Board of Peking University School and Hospital of Stomatology (No.
IRBSS2014NNSF01).

Mutation Analysis for Candidate Genes
Genomic DNA was isolated from peripheral blood samples by use of the Biotek DNAMini-kit
(Biotek, Beijing, China), following the manufacturer’s instructions. TheMSX1 (NM_002448),
PAX9 (NM_006194), AXIN2 (NM_004655),WNT10A (NM_025216), EDA (NM_001399) and
EDARADD (NM_080738) genes were selected for genetic analysis, and their exons and exon-
intron junctions were amplified by polymerase chain reaction (PCR). Direct DNA sequencing
was performed using ABigDye terminator v3.1 (Applied Biosystems, Foster City, USA) and a
3730 DNA sequencer (Applied Biosystems). PCR primers and conditions were consistent with
previous studies [6,9,17,20–23].

Conservation Analysis andWebLogo Analysis
Multiple-species amino acid sequence alignment andWebLogo analysis of the AXIN2 protein
(NP_004646.3) were carried out separately by ClustalX 2.1 and WebLogo Version 2.8.2 (http://
weblogo.berkeley.edu) [24]. AXIN2 sequences from zebrafish to human were obtained from
ENSEMBL.

Structural Analysis
Three-dimensional models of the wild-type regulator of G protein signaling (RGS) domain of
the AXIN2 protein and the mutant RGS (p.Val105Gly) domain were designed using the Phyre
threading software (www.sbg.bio.ic.ac.uk/phyre/) [25], based on primary sequence conserva-
tion and known protein structures. The models were manipulated using the PyMOL software
(PyMOLMolecular Graphics System, DeLano Scientific, San Carlos, CA).
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Results

Clinical findings
The proband was an 8-year-old male with a normal appearance. Clinical and radiographic
examinations revealed that, in addition to retained deciduous teeth, the patient was missing a
total of seven permanent teeth excluding third molars, all of them premolars (Fig 1). The inci-
sors, canines, first molars and second molars were normal. No tooth germ for third molars was
detected. Considering his young age, a diagnosis could not yet be made in relation to the lack
of third molars. The proband’s facial features, skin, hair and nails appeared normal. Also, he
reported normal sweating and lachrymal secretion and denied intolerance to heat, or

Fig 1. Clinical characteristics of the proband with non-syndromic oligodontia. (A) Clinical phenotype of the proband. (B) Panoramic radiograph of the
participant. (C) Schematic presentation of congenitally missing teeth of the proband. * Position of a missing tooth;? Undetermined position of a missing tooth.

doi:10.1371/journal.pone.0138221.g001
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susceptibility to respiratory tract infections. His parents’ dentition was normal, and they
reported no family history of tooth agenesis, ectodermal abnormalities or cancer.

Mutation analysis
Following mutation analysis of six genes (MSX1, PAX9, AXIN2,WNT10A, EDA and EDAR-
ADD), we found a novel missense mutation in AXIN2 in the proband. The nucleotide sequence
showed a heterozygous T to G transition at nucleotide 314 (c.314T>G) of the coding sequence
in exon 2 of AXIN2 (Fig 2), which resulted in the substitution of Val at residue 105 for Gly. We
have submitted the information of this AXIN2mutation to ClinVar database in NCBI (www.
ncbi.nlm.nih.gov/clinvar/; Accession number: SCV000223708). The proband’s parents did not
carry the mutation (Fig 2). Also, the mutation was not detected in 100 normal controls (Fig 2).
Therefore, this mutation is likely to have occurred de novo.

Conservation analysis
Val105 is located at the RGS domain of the AXIN2 protein (Fig 3). Evolutionary conservation
analysis revealed that the Val105 site is conserved from zebrafish to humans (Fig 3), suggesting
that Val105 may play an important role in the function of the RGS domain. To evaluate the
conservation of the RGS domain of the AXIN2 protein, we carried out WebLogo analysis
(http://weblogo.berkeley.edu) and compared the conservation of all amino acids of the RGS
domain from zebrafish to humans based on multiple alignments. We found that the RGS
domain was relatively conserved (Fig 3).

Structural Analysis
Structural analysis predicted that the 3D structures of the wild-type and mutant RGS domain
of AXIN2 are different at residue 105 (Fig 4), which suggests that the p.Val105Gly substitution
may affect the structure of the RGS domain of the AXIN2 protein.

Discussion
Our findings indicate that the novel heterozygous transition found in AXIN2 (c.314T>G)
might be responsible for the presentation of non-syndromic oligodontia in the proband. This
mutation, which results in a Val105Gly substitution, is localized to the regulator of G protein
signaling (RGS) domain found in the Axin protein. RGS domains are protein structural
domains that activate GTPases via heterotrimeric G-protein alpha-subunits; RGS proteins
have been conserved in evolution [26]. This missense mutation (c.314T>G) may affect the
function of the RGS domain of the AXIN2 protein, leading to oligodontia.

In families with severe tooth agenesis and in several mutant mouse lines, the phenotypes are
variable in expression, presumably due to the effects of modifying genes and other genetic
backgrounds as well as postgenetic factors [27]. In tooth agenesis, this variation in effect of
major genetic factors can be reflected as incomplete penetrance. In this study, the proband’s
parents displayed normal dentition and reported no family history of tooth agenesis or other
ectodermal abnormalities. This may suggest incomplete penetrance of oligodontia in this fam-
ily. However, the novel mutation was identified only in the proband, and his parents did not
carry the mutation (Fig 2). Moreover, the highly conserved character of the mutated nucleotide
(Fig 3), as well as the number of analyzed control alleles (100), precludes the possibility that
this transition is a rare polymorphism of AXIN2. Hence, we confirm that this missense muta-
tion is a de novo germline mutation. A number of studys have reported SNPs in AXIN2 associ-
ated with tooth agenesis [23,28–29], Mu et al. [23] presented 7 SNPs in the AXIN2, and 3 SNPs
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were in exons. We did not find any SNPs in AXIN2 in the proband and his parents. It’s seemed
that SNPs in AXIN2 is not a risk factor for this family.

Fig 2. Sequence analyses of the AXIN2 gene. (A) A normal control shows the wild-type genotype. (B) A de novo heterozygous mutation, c.314T>G, was
found in the proband, but not in his parents.

doi:10.1371/journal.pone.0138221.g002
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Five conserved signaling pathways, including the fibroblast growth factors (Fgf), bone mor-
phogenetic proteins (Bmp), ectodysplasin (Eda), wingless-related (Wnt) and sonic hedgehog
(Shh) pathways, play a critical role throughout tooth development [30]. Inactivation of any of
these pathways results in early tooth developmental arrest in mice. Mutations in these path-
ways have also been identified in human patients with tooth agenesis. The MSX1 and PAX9
transcription factors are involved in the Bmp and Fgf pathways during tooth development
[31]. The Eda pathway is active during the development of ectodermal organs, including teeth,
hairs, feathers, and mammary glands and was discovered by studying human patients affected
by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA,
a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to
the TNFα receptors, and EDARADD, a specific adaptor [32]. Recently,WNT10A, belonging to
the Wnt pathway, became a focal candidate gene for tooth agenesis.WNT10A was identified as
a causal gene of autosomal recessive ectodermal dysplasia or isolated tooth agenesis [33–35].

Fig 3. Structure and conservation analysis of the p.Val105Gly mutation in AXIN2. (A) The AXIN2 protein is 777 AA long with 4 conserved domains. The
105th AA position is mutated in the proband Val105Gly which resides in the RGS domain. (B) Evolutionary conservation analysis revealed that the Val105
site is conserved from zebrafish to humans. There are 28 out of 33 AA near the Val105 site that are conserved, this is a very high degree of conservation. (C)
WebLogo analysis showed that the RGS domain (from zebrafish to humans) was relatively conserved. TNKS_binding: Tankyrase binding N-terminal
segment of axin; RGS: Regulator of G protein signaling (RGS) domain; DAX: Domain present in Dishevelled and Axin.

doi:10.1371/journal.pone.0138221.g003
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Moreover, Pakeeza et al.[36] stated thatWNT10Amutations account for one-quarter of popu-
lation-based isolated oligodontia, and Van den Boogaard et al.[8] reported that mutations in
WNT10A are present in more than half of isolated hypodontia cases. In the present study, we
did not identify any mutation inWNT10A, but one was identified in AXIN2. AXIN2 is an
intracellular antagonist of the Wnt signaling pathway. Thus, this missense mutation
(c.314T>G) in AXIN2may affect tooth development via the Wnt pathway.

To date, four studies reported seven AXIN2mutations associated with syndromic or non-
syndromic tooth agenesis [6,16,21,37]. Among the seven, two mutations caused syndromic
tooth agenesis: in 2004, Lammi et al.[16] showed that a nonsense mutation in AXIN2
(c.1966C>T, p.Arg656Stop) caused oligodontia and predisposed to cancer. Additionally, in
2009, Marvin et al.[37] described a family with a novel, nonsense AXIN2mutation
(c.1989G>A, p.Tyr663X) segregating in an autosomal dominant pattern with oligodontia and
variable other findings, including colonic polyposis, gastric polyps, a mild ectodermal dysplasia
phenotype with sparse hair and eyebrows, and early onset colorectal and breast cancers. In the
remaining five AXIN2mutations causing non-syndromic tooth agenesis, four are missense
mutations (p.Ala758Thr, p.Ala684Val, p.Thr308Met and p.Met830Ile), and one is a frameshift
mutation (p.Gly666GlyfsX42) [6,16,21]. It appears that AXIN2mutations that lead to a trun-
cated AXIN2 protein are more likely to lead to syndromic oligodontia and predispose to can-
cer. In this study the missense mutation in AXIN2 (c.314T>G) resulted in the substitution of
Val at residue 105 for Gly. Structural analysis predicted that the 3D structures of the wild-type
and mutant RGS domain of AXIN2 are different at residue 105 (Fig 4). This results suggests
that although the overall structure of the protein is complete, the p.Val105Gly substitution
may affect some functional activity of AXIN2 protein. This may lead to the occurrence of clini-
cal symptoms. Of course, functional study of the mutant protein need to be done to confirm
the assumption in the future. Because the AXIN2mutation (c.314T>G) identified in the

Fig 4. Structural analysis of the RGS domain of the AXIN2 protein. (A) Location of the Val105 residues within the RGS domain of AXIN2. (B) Location of
the Gly105 residues within the RGS domain of AXIN2.

doi:10.1371/journal.pone.0138221.g004
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present study occurred de novo, cancer prevention measures are necessary for the 8-year-old
male proband.

Interestingly, in the present study, the proband was missing a total of seven permanent
teeth (excluding third molars), all of which were premolars. In previous studies, the positions
of missing teeth in patients with AXIN2mutation were not identical [6,16,21,37]. At present,
the phenotype-genotype association in AXIN2-related patients is unclear. However, in all
cases, patients with an AXIN2mutation were missing at least seven teeth. This indicates that
any change in the AXIN2 protein can cause severe tooth agenesis.

In conclusion, this study report describes a de novo AXIN2missense mutation (c.314T>G)
in a Chinese individual with non-syndromic oligodontia. This mutation is located at the regu-
lator of G protein signaling (RGS) domain of the AXIN2 protein, which is a highly conserved
region. In addition, this study extends the mutation spectrum of the AXIN2 gene in individuals
with non-syndromic tooth agenesis. Furthermore, our findings confirm that AXIN2 plays an
important role in human tooth development. However, further studies are necessary to clarify
the precise role of AXIN2 in tooth development.
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