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High-morbidity and high-mortality illnesses, includ-
ing cancer and cardiovascular, metabolic and neuro-
logical diseases, are difficult to diagnose without
supplemental laboratory testing. The earlier a disease
is detected and diagnosed, the more likely it is that
appropriate treatment will be administered, thus
reducing the severity of the disease for the patient.
Early detection is therefore vital for implementing
effective clinical treatment. However, three limita-
tions prevent the full benefits of clinical diagnostics
from being realized: definitive biomarkers associated
with disease; simple and inexpensive methods that
are minimally invasive; and an accurate, portable and
easy-to-use diagnostic platform.

Saliva is a biofluid comprising secretions of the sali-
vary glands (the parotid, submandibular, sublingual
and other minor salivary glands), oral mucosa cells,
blood and gingival crevicular fluid (Fig. 1). Similarly
to serum and other biofluids, saliva contains biomo-
lecules such as DNA, mRNA, microRNA, protein,
metabolites and microbiota. Because obtaining saliva
can be low cost, noninvasive, simple and does not
cause patient discomfort, it is a highly desirable body
fluid for biomarker development for clinical applica-
tions. The aim of this review was to provide a status
review of salivary ‘omics’ constituents, the mecha-
nism of salivary diagnostics and their translational
and clinical applications.

Salivaomics

Saliva contains a variety of biomolecules, including
DNA, mRNA, microRNA, proteins, metabolites and
microbiota; changes in the salivary concentration of

these biomolecules can be used to develop dysregu-
lated biomarkers to help identify early oral and sys-
temic diseases, evaluate disease prognosis and risk,
and monitor the response to treatment (22, 89). The
term ‘salivaomics’ was coined in 2008 to reflect
knowledge about the various ‘omics’ constituents in
saliva, including the genome, epigenome, transcrip-
tome, proteome, metabolome and microbiome (2,
107) (Fig. 2).

The salivary genome and
epigenome

The salivary genome consists of both human and
microbial DNAs. Nearly 70% of the salivary genome is
of human origin, whereas the remaining 30% is from
the oral microbiota (81). The quality of salivary DNA
is good: 72–96% of samples can be genotyped; 84%
can be amplified; and 67% can be sequenced (33, 64)
and stored long term without significant degradation
(9). Salivary genetic and epigenetic analyses provide
gene-transcription profiles that reflect abnormal
pathological genetic processes.

DNA methylation is an epigenetic process that can
change in response to the passage of time, develop-
ment or environmental exposure (14). Aberrant
methylation of genes (e.g. promoter hypermethyla-
tion) is common in cancers (17, 19). Chi et al. (102)
completed a methylation array on DNA extracted
from preoperative saliva, postoperative saliva and tis-
sue from patients with oral squamous cell carcinoma,
as well as on DNA from saliva of healthy control sub-
jects (i.e. without oral squamous cell carcinoma).
They found significant differences in DNA-methyla-
tion patterns between the preoperative and postoper-
ative saliva of patients with oral squamous cell
carcinoma and between preoperative saliva from
patients with oral squamous cell carcinoma andY. Zhang, J. Sun and C-C. Lin contributed equally to this work.
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saliva from healthy controls. Gene panels of four to
10 genes were constructed and exhibited a sensitivity
of 62–77% and a specificity of 83–100% for oral squa-
mous cell carcinoma. Carvalho et al. (18) evaluated
tumor suppressor gene promoters in pretreatment
saliva from patients with head and neck squamous
cell carcinoma using quantitative methylation-speci-
fic PCR; methylation of at least one of the selected
genes in the saliva DNA was demonstrated in more
than 50% of patients, and local disease control and
overall survival were significantly lower in patients
presenting with hypermethylation in saliva rinses.

Transcriptomes (mRNA and
microRNA)

Transcriptome studies have focused mainly on mRNA
and microRNA, which are secreted from cells and
enter the oral cavity from various sources, including
salivary glands, gingival crevicular fluid and desqua-
mated oral epithelial cells (74). The transcription of
specific mRNA and microRNA is altered in disease
states. Recent research has revealed more than 3,000
species of mRNA and over 300 microRNAs in the sal-
iva of healthy and diseased subjects (6), suggesting
that transcriptomic analysis can be of value to moni-
tor healthy and disease states.

The human salivary transcriptome was first discov-
ered in our laboratory using microarray technology,
allowing high-throughput analysis (61). We then
developed direct saliva transcriptome analysis to per-
mit simple stabilization of salivary RNA and direct
analysis without further processing (44, 56). Since
2010, we have reported the detection of salivary
mRNA biomarkers in a number of cancers and
systemic diseases. Using the Affymetrix HG-U133-
Plus-2.0 array Affymetrix, Santa Clara, CA, USA) for
discovery and quantitative real-time PCR for valida-
tion, Zhang et al. (113) identified four mRNA
biomarkers (v-Ki-ras2 Kirsten rat sarcoma viral onco-
gene homolog, methyl-CpG binding domain protein
3-like 2, acrosomal vesicle protein 1 and dolichyl-
phosphate mannosyltransferase polypeptide 1) that
can differentiate patients with early-stage resectable
pancreatic cancer from noncancer subjects (i.e.
patients with chronic pancreatitis and healthy con-
trols) with high sensitivity and specificity. Aside from
pancreatic cancer, results from our laboratory further
demonstrate the utility of salivary mRNAs for the

Fig. 2. The components of salivaomics. Salivaomics as the
various ‘omics’ constituents of saliva, including genomics
(human and microbial), the oral microbiome, epigenome
(DNA methylation), transcriptome (mRNA, microRNA and
other noncoding RNAs), proteome and metabolome.

Fig. 1. Saliva is composed of biomo-
lecules and fluids from different
sources. Saliva is mainly secreted by
salivary glands, and its informative
biomolecules (DNA, RNA, proteins,
metabolites and microbiota) are
obtained from salivary glands, oral
mucosa cells, oral microbiota and
gingival crevicular fluid.
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detection of oral cancer (60), lung cancer (115), breast
cancer (114), ovarian cancer (57) and other systemic
diseases. Hu et al. (43) reported that three mRNA
biomarkers (myeloid cell nuclear differentiation anti-
gen, guanylate binding protein 2 and low-affinity IIIb
receptor for the Fc fragment of IgG) were significantly
elevated in patients with primary Sj€ogren’s syndrome
compared with patients with systemic lupus erythe-
matosus and healthy controls. Using the Illumina
Human 12WG Expression BeadChip (Illumina, San
Diego, CA, USA) for discovery and quantitative real-
time PCR for validation, Lakschevitz et al. (51)
demonstrated up-regulated expression of a variety of
B-cell lymphoma-2-related transcripts in neutrophils
from oral rinse samples of patients with chronic peri-
odontitis compared with healthy controls. Gomes
et al. (31) reported that, in saliva of patients with
chronic periodontal disease and type 2 diabetes mel-
litus, the expression of mRNA for interferon gamma
had an increasing trend association with severity of
periodontitis.

MicroRNAs are a group of small, noncoding RNAs
(19–25 nucleotides) that are encoded by genes but are
not translated into proteins. MicroRNAs are centrally
involved in various biological processes, including cell
differentiation, proliferation and survival (5). Many
studies have shown that microRNAs are frequently
dysregulated in cancer tissues compared with healthy
control tissues (49, 99, 116). Compared with salivary
mRNA, salivary microRNAs are more stable (27, 76),
and the fold change inmicroRNA between cancer cells
and normal cells is fairly large (48, 72). Park et al. (76)
used reverse transcription–preamplification–quanti-
tative PCR to measure salivary microRNAs in patients
with oral squamous cell carcinoma and in healthy
controls. They found that two microRNAs (miR-125a
and miR-200a) were significantly reduced in the saliva
of patients with oral squamous cell carcinoma com-
pared with healthy controls. Matse et al. (68) investi-
gated differences of microRNA expression in saliva
from patients with malignant and benign parotid
gland tumors using the TaqMan microRNA array
cards for discovery and quantitative real-time PCR for
the validation phase. Their results indicated that a
combination of four microRNAs (hsa-miR-132, hsa-
miR-15b, mmu-miR-140 and hsa-miR-223) is valuable
in the detection of parotid gland malignancy.

To advance the discovery of extracellular RNA
biomarkers in saliva, massive parallel sequencing of
transcripts (using RNA-Seq) was used to sequence
and characterize the salivary transcriptome in greater
detail (75). RNA-Seq is analytically more sensitive
than microarrays, can detect differentially expressed

genes and provides information about each RNA
sequence that we were unable to obtain in previous
studies (38, 104). Approximately 20–25% of the
sequenced reads from cell-free saliva correspond with
those for the human genome, and approximately 30%
of the sequenced reads correspond with the Human
Oral Microbiome Database. More than 4,000 coding
and noncoding genes in cell-free saliva and whole sal-
iva were detected (90).

The proteome

Saliva contains more than 2,000 proteins that are
involved in many biological functions to maintain oral
homeostasis (4). Unlike the relatively stable status in
serum, proteins in saliva appear to be more susceptible
to biochemical processes and degradation (35, 84).
Esser et al. (25) reported that salivary protein degrada-
tion occurs rapidly, even during saliva collection and
handling, which may compromise its clinical useful-
ness. Our laboratory has developed methods to stabi-
lize the salivary proteome with protease inhibitors; as a
result, we can keep salivary proteins stable for 2 weeks
when stored at 4°C without significant degradation and
without affecting downstream applications (108).

Because of high-sensitivity and high-accuracy mass
measurement of peptides, mass spectrometry has
become the core technology for protein identifica-
tion. Surface-enhanced laser desorption/ionization
time-of-flight mass spectrometry has proven to be a
powerful tool for identification and quantification of
post-translational modifications on proteins in saliva.
Several studies have reported biomarkers in saliva
using this rapid and high-throughput tool (20, 73, 93).
Two-dimensional difference gel electrophoresis com-
bined with mass spectrometry has recently been used
in salivary proteomic biomarker discoveries. Using
two-dimensional difference gel electrophoresis, Hu
et al. (40, 41) reported 16 peptides in saliva that were
found at significantly different levels in patients with
primary Sj€ogren’s syndrome compared with healthy
controls. Xiao et al. (109) reported three proteins
(zinc-a-2-glycoprotein, haptoglobin and human cal-
protectin) that had good discriminatory power in
lung cancer patients and healthy control subjects,
with high sensitivity (89%) and high specificity (92%).
Studies also detected salivary protein biomarkers,
such as S100 calcium binding protein P, plastin-2 and
neutrophil defensin, in chronic periodontitis (83);
interleukin-8, interleukin-1beta and Mac-2 binding
protein in oral cancer (24); and adenosine deaminase
in tongue cancer (79).
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The metabolome

The metabolome, which enables the parallel evalua-
tion of a group of endogenous and exogenous
metabolites, including lipids, amino acids, peptides,
nucleic acids, organic acids, vitamins, thiols and car-
bohydrates, is a valuable tool for discovering
biomarkers, monitoring physiological status and
making proper treatment decisions (3, 95, 112).

Based on the different metabolomic technology,
studies have reported that salivary metabolites can-
not only identify health status (7, 8), but can also dis-
criminate diseased patients from healthy control
subjects. Sugimoto et al. (94) used capillary elec-
trophoresis time-of-flight mass spectrometry to
investigate discriminatory metabolites from healthy
controls and patients with oral cancer, pancreatic
cancer, breast cancer and periodontal disease, and
identified 57 metabolites predictive of each individual
disease. Most of these metabolites were present at
relatively high concentrations in all three cancer-pa-
tient groups compared with the periodontal disease
patients and healthy control subjects. In addition,
three metabolites (taurine, piperidine and a peak at
120.0801 m/z) were oral cancer-specific markers with
an area under the curve of 0.865, and eight metabo-
lites (leucine, isoleucine, tryptophan, valine, glutamic
acid, phenylalanine, glutamine and aspartic acid)
were pancreatic cancer-specific markers with an area
under the curve of 0.993. Also using capillary elec-
trophoresis time-of-flight mass spectrometry,
Tsuruoka et al. (98) demonstrated that the concentra-
tions of two salivary metabolites (arginine and tyro-
sine) differed significantly between patients with
dementia and healthy subjects. Applying ultraperfor-
mance liquid chromatography coupled with quadru-
pole/time-of-flight mass spectrometry, Wei et al.
(105) found that a combination of three salivary
metabolites (phenylalanine, valine and lactic acid)
could distinguish patients with oral squamous cell
carcinoma from healthy controls with high sensitivity
and high specificity (86.5% and 82.4%, respectively),
and could also distinguish patients with oral leuko-
plakia from healthy controls with high sensitivity and
high specificity (94.6% and 84.4%, respectively).

The microbiome

The oral cavity is a diverse habitat of bacteria and
other microorganisms. A series of evidence shows
that oral dysbiosis can lead to oral diseases, such as
periodontal diseases (29) and dental caries (15), as

well as cancer and other systemic diseases (1, 21, 85).
In the past, it was thought that there were approxi-
mately 1,000 bacterial species in the oral cavity (82).
Now, using next-generation sequencing technology,
the number of species could reach more than 10,000
(62). The use of next-generation sequencing, bacterial
microarrays and other emerging techniques can
advance the investigation of the salivary microbiome
and identify the association between special bacteria
or other microorganisms and special oral or systemic
diseases (39, 110).

Mager et al. (65) used checkerboard DNA–DNA
hybridization to evaluate the oral microbiota in saliva
from patients with oral squamous cell carcinoma and
healthy subjects, and found a combination of three
microbiotas (Capnocytophaga gingivalis, Prevotella
melaninogenica and Streptococcus mitis) that could
be used as diagnostic biomarkers with 80% sensitivity
and 82% specificity. Recently, using the Human Oral
Microbe Identification Microarray during the discov-
ery phase and quantitative PCR during the validation
phase, Farrell et al. (26) profiled the salivary micro-
biota from patients with pancreatic cancer and
healthy subjects; the results showed that the numbers
of 31 bacterial species were increased and the num-
bers of 25 were decreased in patients with pancreatic
cancer compared with healthy subjects and that two
bacterial candidates (Neisseria elongate and Strepto-
coccus mitis) could be used to distinguish patients
with pancreatic cancer from healthy controls with
96.4% sensitivity and 82.1% specificity.

The mechanism of salivary
diagnostics

Recent translational salivary biomarker development
studies have supported that salivary biomarkers can
discriminate patients with oral and systemic diseases
from subjects without such diseases (12, 13, 57, 113,
115). However, the mechanisms of how diseases distal
from the oral cavity lead to the appearance of dis-
criminatory biomarkers in saliva are largely unclear
(54). Investigating the origin of salivary biomarkers
will be a significant goal in the development of sali-
vary diagnostics, and the mechanisms of salivary
diagnostics need to be elucidated.

Studies have increasingly demonstrated that some
salivary biomarkers might derive from systemic
sources. Gao et al. (28) used mouse models of cancer
to determine whether salivary biomarker profiles are
affected by distal tumor development. Their data
analysis of nerve growth factor production and the
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transcription factor (early growth response-1) sug-
gests that the production of growth factors in tumor
tissue represents one mechanism by which a distant
tumor can alter the transcriptome of the salivary
glands, and hence saliva. Although their report did
not comprehensively demonstrate the mechanistic
connection between systemic disease development
and salivary biomarker alterations, it did begin to
paint a picture of the concept of the existence of sys-
temic networks in the human body that allow com-
munication between distal diseases and the salivary
glands. Signals transmitted through such networks
might induce related signaling pathways that result in
altered gene expression and protein translation, and
thereby produce disease-induced salivary biomarker
profiles. Therefore, the salivary transcriptomic profile
might be composed of transcripts that originate in
distant diseased tissues as well as of transcripts that
originate in salivary glands, and transcription factors
that originate in distant tissues might alter the expres-
sion levels of these transcripts.

Exosomes: from formation to target

Cells continuously secrete a large number of
microvesicles, macromolecular complexes and small
molecules into the extracellular space. Among the
microvesicles secreted, nanoparticles called exo-
somes are currently undergoing intense scrutiny.
Although exosomes were first discovered nearly
30 years ago, they were considered as little more than
cellular entities that acted to discard unwanted
molecular components. However, since 2007, evi-
dence has begun to accumulate to suggest that these
vesicles are signaling shuttles containing cell-specific
collections of proteins, lipids and genetic material
that are transported to other cells, in which they alter
function and physiology. Hence, these findings have
reignited interest in exosomes (97).

Exosomes are small vesicles (30–120 nm) that con-
tain nucleic acid and protein, and they are perceived
to carry this cargo between diverse locations in the
body. They are distinguished in their genesis by being
budded into endosomes to form multivesicular bod-
ies in the cytoplasm. Exosomes are released to extra-
cellular fluids by fusion of these multivesicular bodies
with the cell surface, resulting in secretion in bursts.
They are secreted by most cell types (23, 100, 117),
and are also found in abundance in body fluids,
including blood, saliva, urine and breast milk (103).

Specifically, at the beginning of exosome forma-
tion, internal vesicles are formed by the inward

budding of cellular compartments known as multi-
vesicular endosomes. Multivesicular endosomes bud
inward to form small internal vesicles that contain
proteins, mRNA and microRNA from the cytoplasm.
When multivesicular endosomes fuse with the cell
membrane, these internal vesicles are released as
exosomes, which can travel to distant tissues to influ-
ence various aspects of cellular behavior; alterna-
tively, multivesicular endosomes can fuse with
lysosomes, which degrade multivesicular endosome
contents. Upon reaching their destinations (which
are usually determined by the binding of specific
ligands on their surfaces), exosomes enter the target
cells in one of two ways: by being taken up by the tar-
get cell’s endocytic pathway; or by fusing to the target
cell’s membrane and releasing their contents directly
into the cytoplasm. Cells also secrete other mem-
brane-derived vesicles, such as ectosomes, shed vesi-
cles or microvesicles, which bud directly from the
cell’s plasma membrane. These vesicles are also
known to carry active proteins and RNAs, as well as
some compounds that have never before been
described in exosomes; however, little is known about
their effects on distant tissues (Fig. 3) (97).

Biological functions of exosomes

Exosomes have been proposed to signal both by
binding to cell-surface receptors through adhesion
molecules (80) and by fusing with, or being internal-
ized by, the recipient cell, potentially donating their
own cytoplasm to the recipient cell (77, 96). The latter
implies that exosomes may have mechanisms that
are different from their function in the immune sys-
tem. L€asser et al. (52) recently discovered substantial
amounts of RNA in exosomes derived from mast cells,
which have the capacity to donate their RNA to other
cells and can subsequently affect the protein produc-
tion of a recipient cell. This finding suggests that RNA
can be transferred between mammalian cells by an
extracellular exosome-based transport mechanism,
which has vast implications for the understanding of
cell communication, regulation and signaling, in
addition to extensive therapeutic potential in many
diseases.

Beyond their characteristic repertoire of surface
markers, exosomes feature a wide range of surface
and internal proteins specific to their source. When
considering the diversity of cargo transported by exo-
somes, it should come as no surprise that exosomes
have already been implicated in the development of
polarized epithelial cells, neuronal development and
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tumor growth (50). Hunter et al. (45) identified the
presence of various microRNAs in human serum exo-
somes. A single microRNA can regulate hundreds of
genes and may act as a master regulator of processes;
therefore, select subsets of microRNAs can be used as
biomarkers of physiological and pathological states.
Another feature that makes microRNAs excellent can-
didates for use in biomarker studies is their remark-
able stability and resistance to degradation. In the
clinical setting, exosomes are present in blood, saliva,
plasma, urine, amniotic fluid and effusions from
malignant tumors. Given the relative ease and nonin-
vasive nature of exosome isolation from patient sam-
ples, as well as their distinctive protein and
nucleotide contents, several studies have suggested
using exosomal biomarkers for disease diagnostic
purposes. A study by Mi et al. (70) showed that the
expression of as few as two microRNAs can accurately
discriminate acute lymphoid leukemia from acute
myeloid leukemia, whilst Skog et al. (88) suggested
that glioblastoma tumor-derived exosomes in patient
with glioblastoma tumor carry a distinctive microRNA
payload that can be used diagnostically. The majority
of these studies investigated exosomes isolated from
serum; only a few have focused on proteomic exoso-
mal biomarkers in urine and saliva (71).

Diagnostic and therapeutic
potential of exosomes

Recent research indicates that exosomes provide a
mechanism for identifying diagnostic and therapeu-

tic salivary biomarkers that perform well in pancre-
atic cancer, breast cancer and glioblastoma. Lau
et al. (53) examined the hypothesis that pancreatic
tumor-derived exosomes are mechanistically
involved in the development of pancreatic cancer-
discriminatory salivary transcriptomic biomarkers.
They developed a pancreatic cancer mouse model
that yielded discriminatory salivary biomarkers by
implanting the mouse pancreatic cancer cell line,
Panc02, into the pancreas of the syngeneic C57BL/
6 host. Then, they tested the role of pancreatic
cancer-derived exosomes in the development of
discriminatory salivary biomarkers by engineering a
Panc02 cell line that is suppressed for exosome bio-
genesis, implanting it into the C56BL/6 mouse and
examining whether the discriminatory salivary bio-
marker profile was ablated or disrupted. Suppres-
sion of exosome biogenesis resulted in the ablation
of discriminatory salivary biomarker development.
Their study supported the hypothesis that tumor-
derived exosomes provide a mechanism for the
development of discriminatory salivary biomarkers
that are applicable to distal systemic diseases (53).

Lau et al. (54) used an in vitro breast cancer model
to demonstrate that breast cancer-derived exosome-
like microvesicles are capable of interacting with sali-
vary gland cells, altering the composition of their
secreted exosome-like microvesicles. They found that
the salivary gland cells secrete exosome-like
microvesicles which encapsulate both protein and
mRNA. They also showed that breast cancer-derived
exosome-like microvesicles communicate with and
activate the transcriptional machinery of salivary

Fig. 3. Exosomes: from formation to
target cell. Multivesicular endo-
somes bud inward to form small
internal vesicles that contain pro-
teins, mRNAs and microRNAs from
the cytoplasm. Multivesicular endo-
somes can fuse with the cell mem-
brane and internal vesicles are
released as exosomes. Alternatively,
multivesicular endosomes can fuse
with lysosomes, which degrade the
contents of the multivesicular endo-
some. Exosomes can travel to distant
tissues and enter target cells by
being taken up by the target cell’s
endocytic pathway or by fusing to
the target cell’s membrane and
releasing their contents directly into
the target cell’s cytoplasm.
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gland cells. Thus, the interaction altered the composi-
tion of the salivary gland cell-derived exosome-like
microvesicles at both transcriptome and proteome
levels.

Translational and clinical
applications of saliva biomarkers

As we have increased our understanding of sali-
vaomics and the advantages of saliva as a valuable
diagnostic tool have been revealed, the surveillance
of disease and general health has become a highly
desirable goal. Evaluating alterations of salivary
biomarkers can be applied to the early detection, risk
assessment, diagnosis, prognosis and monitoring of
the progress of a variety of diseases, including can-
cers, infectious diseases and immune diseases. Some
oncogenic proteins that are detectable in saliva (e.g.
human epidermal growth factor receptor-2) provide a
basis for developing targeted therapy. Saliva also
serves as a platform for personalized medicine. By
comparing salivary biomarkers from patients receiv-
ing different treatments with different outcomes, sal-
iva proteomics can also be used to monitor treatment
response.

Disease detection

Oral disease and oral cancer

Salivary diagnostics have been developed to monitor
periodontal disease and other oral diseases. Salivary
interleukin-1beta and multiple oral pathogens were
found to be associated with periodontitis in a study in
which the concentrations of a select subset of salivary
proteins (elastase, lactate dehydrogenase, inter-
leukin-1beta, interleukin-6 and tumor necrosis factor
alpha) and the presence of five pathogens were com-
pared in patients with advanced periodontal disease
and healthy controls (32) (Table 1). In a study on dys-
plastic oral leukoplakia in relation to tobacco habits
and periodontitis, increasing salivary interleukin-6
levels were demonstrated to correlate with severity of
dysplasia (87). These findings indicate that salivary
biomarkers have the potential to detect oral disease
and determine disease stage.

Oral cancer (more than 90% of which are oral squa-
mous cell carcinoma) is the sixth most common can-
cer worldwide, with an average 5-year survival rate of
approximately 60% (111). The key to reduce the mor-
tality and morbidity associated with this disease is to

develop strategies to identify oral squamous cell car-
cinoma at an early stage. Several biomarker candi-
dates for oral squamous cell carcinoma have been
reported, including endothelin receptor type B hyper-
methylation (78), interleukin-8 and microRNAs (such
as miR-200a, miR-125a and miR-31) (63, 76, 91);
however, only interleukin-8 has proved to be a cost-
efficient analyte for early detection of oral squamous
cell carcinoma (9). Several biomarker panels have
also been investigated for their ability to detect oral
squamous cell carcinoma. Our previous salivary tran-
scriptomic studies have discovered seven oral squa-
mous cell carcinoma-associated salivary RNAs
(interleukin-8, interleukin-1beta, dual specificity
phosphatase 1, H3 histone family 3A, ornithine decar-
boxylase antizyme 1, S100 calcium binding protein P
and spermine N1-acetyltransferase). Initially, the
levels of these RNAs were measured in a training set
of 32 oral squamous cell carcinomas and 32 control
samples using quantitative PCR, and a logistic regres-
sion model including four markers (interleukin-8,
Spermidine/spermine N1-acetyltransferase, inter-
leukin-1beta and ornithine decarboxylase antizyme 1)
achieved a cross-validation prediction accuracy rate
of 81%, showing their potential as biomarkers for oral
squamous cell carcinoma detection (60). The prevali-
dation study of these biomarkers demonstrated their
ability to discriminate patients with oral squamous
cell carcinoma from control subjects (24). Other pro-
teomic, metabolomic or epigenetic biomarkers have
achieved lower specificity or have not been validated
(11, 42, 94, 102, 105).

Pancreatic cancer

Pancreatic cancer is characterized by a propensity to
disseminate rapidly to the lymphatic system and dis-
tant organs. Approximately 15–20% of patients have
surgically resectable disease at the time of presenta-
tion; however, of these patients, only approximately
20% survive to 5 years (36, 47, 58). This aggressive
biology, resistance to conventional and targeted ther-
apeutic agents and lack of biomarkers for early detec-
tion result in the poor outcomes of these patients. In
a significant milestone, prospective sample collection
and a retrospective double-blind validation study
(113) showed that a salivary transcriptome profile
could be used to detect early-stage resectable pancre-
atic cancer. Microbial profiling derived from the
Human Oral Microbe Identification Microarray was
used to investigate variations in salivary microbiota
between groups of 10 resectable patients with pancre-
atic cancer and 10 matched healthy controls. The
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Table 1. Salivary biomarkers for detecting oral disease, oral cancer, pancreas cancer, lung cancer, and breast cancer,
discovered using epigenomics, transcriptomics, proteomics and metabolomics

Disease Methodology Approach Markers

Periodontal
disease

Proteomic ELISA (87) Interleukin-6

Proteomic and
microbial
studies

ELISA (32) Interleukin-1 and Aggregatibacter
actinomycetemcomitans, Porphyromonas
gingivalis, Prevotella intermedia, Tannerella
forsythia and Treponema denticola

Proteomic Multiplex protein array discovery (55) Interleukin-6, interleukin-8

Oral cancer Epigenomics Candidate from previous study,
quantitative methylation-specific PCR
discovery and validation (78)

Kinesin family member 1A, endothelin receptor
type B

Transcriptomics Microarray discovery and quantitative
PCR validation (60)

Interleukin-8, spermine N1-acetyltransferase,
interleukin-1beta, ornithine decarboxylase
antizyme 1, H3 histone family 3A, dual
specificity phosphatase 1, S100 calcium
binding protein

Transcriptomics Microarray discovery and quantitative
PCR validation (24)

Interleukin-8, interleukin-1beta, ornithine
decarboxylase antizyme 1, spermine
N1-acetyltransferase

Transcriptomics Discovery and validation by reverse
transcription–preamplification–
quantitative PCR or candidate gene
selection based on previous study,
quantitative RT-PCR quantification
(63, 76)

miR-200a, miR-125a and miR-31

Proteomic ELISA assessment and quantitative
PCR confirmation (91)

Interleukin-8

Pancreatic
cancer

Transcriptomics Affymetrix array discovery and
quantitative RT-PCR validation (113)

v-Ki-ras2 Kirsten rat sarcoma viral oncogene
homolog, methyl-CpG binding domain
protein 3-like 2, acrosomal vesicle protein 1,
dolichyl-phosphate mannosyltransferase
polypeptide 1

Metabolomics Discovery by capillary electrophoresis
time-of-flight mass spectrometry-
based metabolomics (94)

Leucine with isoleucine, tryptophan, valine,
glutamic acid, phenylalanine, glutamine and
aspartic acid

Microbiome Microbial profiling using the Human
Oral Microbe Identification
Microarray (26)

Neisseria elongata and Streptococcus mitis

Lung cancer Transcriptomics Microarray discovery and quantitative
RT-PCR verification and prevalidation
(115)

Cyclin I, epidermal growth factor receptor,
fibroblast growth factor 19, fibroblast growth
factor receptor substrate 2, growth regulation
by estrogen in breast cancer 1

Proteomics Two-dimensional gel electrophoresis
and liquid chromatography–tandem
mass spectrometry (109)

Calprotectin, zinc-a-2-glycoprotein,
haptoglobin

Metabolomics Discovery by surface-enhanced Raman
spectroscopy (59)

Unidentified peak wavelengths: 822, 884, 909,
925, 1009, 1,077, 1,369, 1,393 and 1,721 per cm

Breast cancer Combination
proteomic/
transcriptomic
approaches

Discovery by two-dimensional
difference gel electrophoresis and
RT-PCR/Affymetrix; validation by
quantitative RT-PCR (114)

mRNAs: cystatin A, tumor protein,
translationally-controlled 1, insulin-like
growth factor 2 mRNA binding protein 1,
glutamate receptor metabotropic 1, glutamate
receptor ionotropic kainate 1, hexose-6-
phosphate dehydrogenase, Mdm4 p53
binding protein S100A8

Protein: carbonic anhydrase 6
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profiling of bacterial candidates was further validated
by performing quantitative PCR on samples from an
independent cohort of 28 patients with resectable
pancreatic cancer, 28 matched healthy controls and
27 patients with chronic pancreatitis, which yielded a
receiver–operating characteristics plot area under the
curve value of 0.90 (95% CI: 0.78–0.96; P < 0.0001)
(26). A metabolomic approach also identified pancre-
atic cancer-specific salivary metabolomic biomarkers
that can distinguish pancreatic cancer from oral
cancer, breast cancer and cancer-free controls (94).
Both microbiomic and metabolomic biomarkers
have achieved excellent accuracy for pancreatic can-
cer, although only the microbiomic panel has been
validated.

Lung cancer

Lung cancer is the most common cause of cancer-re-
lated death in men and women, in part because
symptoms are frequently absent until the disease has
already metastasized. Early detection represents a
very promising approach to reducing the incidence
and mortality of lung cancer. However, conventional
diagnostic methods for lung cancer are unsuitable
for widespread screening because they are expensive
and occasionally miss tumors or invasive cancer (30,
37). Although computed tomography has been
widely used for screening for early lung cancer, it is
associated with a high false-positive rate (101).
Biomarkers for lung cancer have the potential to
improve early detection beyond the use of computed
tomography scans (34). Using two-dimensional dif-
ference gel electrophoresis proteomic analysis of sal-
iva samples from patients with lung cancer, 16
candidate biomarkers have been discovered and fur-
ther verified (109). Three candidate markers (calpro-
tectin, zinc-a-2-glycoprotein and haptoglobin)
achieved good sensitivity and excellent specificity
and accuracy. Moreover, a transcriptomic biomarker
profile, including the B-Raf gene (which is involved
in directing cell growth), cyclin I (which binds acti-
vated cyclin-dependent kinase 5), the epidermal
growth factor receptor, fibroblast growth factor 19,
fibroblast growth factor receptor substrate 2, growth
regulation by estrogen in breast cancer 1 and leucine
zipper putative tumor suppressor 1, has been identi-
fied, and a panel consisting of five of these markers
is able to differentiate lung cancer patients from can-
cer-free subjects with 93.75% sensitivity and 82.81%
specificity (115). Surface-enhanced Raman spec-
troscopy was recently applied to identify biomarkers
for lung cancer and revealed nine peaks (assigned to

amino acids and nucleic acid bases) that are able to
distinguish samples from patients with lung cancer
and cancer-free controls with 86% accuracy, 94%
sensitivity and 81% specificity (59). Therefore, both
transcriptomic and proteomic approaches are prov-
ing highly useful in developing biomarkers for lung
cancer.

Breast cancer

Breast cancer is the most common form of cancer
and the second leading cause of cancer deaths in
women in the USA (46). Today, breast cancer detec-
tion depends on physical examination and imaging
studies. Earlier investigations demonstrated the
potential for salivary proteomic detection of breast
cancer (e.g. using the salivary protein c-erbB-2) (92,
93). Recently, isobaric tags for relative and absolute
quantitation technology, combined with liquid chro-
matography-tandem mass spectrometry, was used to
analyze saliva samples collected from 20 breast can-
cer patients and 10 healthy controls. Nine proteins
were associated with breast cancer and exhibited 1.5-
fold up-regulation or down-regulation (16). The Affy-
metrix HG-U133-Plus-2.0 Array and two-dimensional
difference gel electrophoresis were used to analyze
the salivary transcriptomes and proteomes of 10
breast cancer patients and 10 matched controls dur-
ing the discovery phase and the salivary transcrip-
tomes and proteomes of 30 breast cancer patients
and 63 controls during prevalidation (114). Eight
mRNA biomarkers and one protein biomarker were
identified, yielding an accuracy of 92% (83% sensitiv-
ity and 97% specificity) for the preclinical validation
sample set.

Other systemic diseases

In addition to providing powerful biomarkers to
detect systemic cancers, saliva also provides biomark-
ers for autoimmune diseases, systemic microbial
infections and diabetes (9). Although present at sig-
nificantly lower levels than in serum, hepatitis C virus
RNA can be consistently detected in saliva from hep-
atitis C virus-infected individuals using quantitative
PCR (69). Label-free differential protein expression
analysis using multidimensional liquid chromatogra-
phy–tandem mass spectrometry was conducted to
characterize the proteome of saliva collected from
patients with type 2 diabetes compared with nondia-
betic controls. Several proteins were found to have
diagnostic potential for type 2 diabetes, but these
require additional study (10).
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Personalized medicine

Cancer patients can be classified according to altered
protein expression profiles, and statistical method-
ologies can be used subsequently to develop predic-
tors for subgroups of patients who may benefit from
targeted therapy. Trastuzumab is a humanized mon-
oclonal antibody targeted against HER2, which is
over-expressed in 25–30% of patients with breast can-
cer. HER2 over-expression is an indicator for trastu-
zumab therapy. United States Food and Drug
Administration-approved immunohistochemical and
fluorescence insitu hybridization methods (106) are
now available to assess HER2 over-expression; how-
ever, these methods are only semiquantitative and
are interpreted in an operator-dependent manner.
Because HER2 is detectable in human saliva, incorpo-
ration of this marker in clinical trials might assist in
the classification of breast cancer patients and help
determine which patient subgroups are most likely to
benefit from such a molecular-targeted therapy. Sal-
iva is also applicable for noninvasive prenatal diagno-
sis in predictive, preventive and personalized
medicine, especially for infants born prematurely.
Amplification of salivary RNA and microarray analysis
identified 9,286 gene transcripts that exhibited statis-
tically significant changes in expression across indi-
viduals over time (66). The changes in gene
expression were closely linked to developmental
pathways. According to Ingenuity Pathway Analysis, a
total of 2,186 genes are involved in successful oral
feeding of infants (67). This finding elucidates the bio-
logical processes involved in oral feeding in the new-
born at a molecular level, as well as novel pathways
associated with successful oral feeding. A gingivitis-
focused experiment that employed a multiplex pro-
tein array for selected biomarkers implicated in host
defense, inflammation, tissue destruction and angio-
genesis demonstrated that salivary biomarkers can
also be used to evaluate the host response to bacterial
invasion. Salivary interleukin-6 and interleukin-8
levels were shown to provide the best distinction
between high and low responders (55).

Therapeutic efficiency

Several candidate approaches have elucidated
biomarkers for periodontitis and responses to therapy.
In a study aiming to identify salivary biomarkers for
chronic periodontitis, 33 participants received oral
hygiene instructions alone and 35 received oral
hygiene instructions in combination with conven-

tional periodontal treatment comprising scaling and
root planing. The levels of interleukin-1beta, macro-
phage inflammatory protein-1alpha, matrix metallo-
proteinase-8 and osteoprotegerin detected in saliva
reflected disease severity and response to therapy (86).

Conclusion

To be useful in a clinical setting, biomarkers should
accurately reflect the presence of disease in a repro-
ducible manner and be able to be collected using a
noninvasive method that requires little preparation.
Salivary diagnostics have these characteristics, and
abundance of biomarkers in saliva are applicable for
detecting systemic disorders in addition to oral dis-
eases. The current decision to use available diagnostic
methods for many diseases is based on patients’
symptoms and clinical information. The process of
obtaining a final diagnosis can impose a burden on
hospitals and involve a long waiting time for patients.
As an accessible and noninvasive primary test for dis-
eases, salivary diagnostics reduces the hospital’s bur-
den and the use of unnecessarily invasive procedures.
As methods of stabilizing whole saliva are developed,
salivary diagnostics can be performed correctly in the
clinic without specially trained professionals, using
point-of-care technology to allow the detection of dis-
ease without any preparation.

As detailed above, salivary diagnostics have both
translational and clinical potentials. The development
of high-throughput technology has revealed advanced
insights toward an understanding of saliva as a reflec-
tion of the condition of the whole body. Exosomes
provide a mechanism for the expression of diagnostic
biomarkers in saliva, and also promote saliva as a
powerful and unprecedented diagnostic tool, in com-
bination with high-throughput technology and bioin-
formatics platforms. The interpretation and utilization
of this information will bolster the applicability of
saliva in diagnosing disease, evaluating therapies and
designing personalized medicine.
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