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Abstract
Significance
In our previous research, we have demonstrated
that SDF-1a could chemoattract SCAP tomigrate.
In this article, we further demonstrated that PI3K
and PKC signaling pathways are involved in SDF-
1a-mediated transmigration of SCAP, which lay
the foundation for clarifying the mechanism regu-
lating SDF-1a-mediated migration of SCAP.
Introduction: Previously, we have shown that stem cells
from apical papilla (SCAPs) can be chemoattracted by
stromal cell–derived factor-1a (SDF-1a). The purpose of
this study was to investigate the intracellular signaling
pathways involved in SDF-1a–mediated migration of
SCAPs. Methods: Chemotaxis assays were performed
to assess the effect of phosphatidylinositol 3-kinase
(PI3K) and protein kinase C (PKC) signaling pathways in
the SDF-1a–mediated migration of SCAPs using inhibi-
tors of PI3K (LY294002) or PKC (GF109203X). The Cell
Counting Kit-8 assay (Dojindo Laboratories, Kumamoto,
Japan) was used to evaluate the effect of the inhibitors
on the proliferation of SCAPs. The expression of focal
adhesion–related proteins was examined by immunoflu-
orescence staining and Western blot analysis. Phosphor-
ylation of PI3K subunit p85 and PKC after SDF-1a
induction was evaluated byWestern blot. Results: The in-
hibition of PI3K or PKC signaling pathways significantly
reduced SDF-1a–mediated migration of SCAPs. The inhib-
itors had no effect on the proliferation of SCAPs. Immuno-
fluorescence analysis revealed that SDF-1a stimulated
focal adhesion formation and stress fiber assembly in
SCAPs, in addition to up-regulation of the expression of
focal adhesion molecules, including p-focal adhesion
kinase, p-paxillin, and vinculin. Pretreatment with PI3K
or PKC inhibitors before SDF-1a induction significantly in-
hibited focal adhesion molecule expression. Moreover,
increased phosphorylation of p85 and PKC were observed
after SDF-1a stimulation, whereas these phosphorylations
were down-regulated by the inhibition of PI3K or PKC
signaling pathways. Conclusions: PI3K and PKC signaling
pathways appear to be required for SDF-1a–mediated
transmigration of SCAPs. These findings provide insights
into the signalingmechanisms that underlie SDF-1a–medi-
ated migration of SCAPs. (J Endod 2016;42:1076–1081)
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Regenerative endodon-
tics has been consid-

ered as the preferred
therapeutic option for the
treatment of endodontically
involved teeth, particularly
immature permanent teeth.
When the pulp is lost in an
immature tooth resulting
from necrosis, dental pulp

stem cells (DPSCs) are no longer present. In cases in which apical papilla is still viable,
stem cells residing in the apical papilla (SCAPs) may be present and could be attracted
into the canal space to regenerate the pulp (1, 2). Chemokines are critical signaling
molecules that could instruct stem cells and specific subpopulations of leukocytes in
trafficking and the homing process to achieve tissue regeneration (3). Stromal cell–derived
factor-1a (SDF-1a) is a widely expressed chemotactic cytokine that belongs to the CXC
cytokine subfamily andmediates cell migration through its binding with the CXC chemokine
receptor 4 (CXCR4) (4, 5). The SDF-1a/CXCR4 axis has been used as a strategy to
regenerate various tissues/organs under multiple physiological and pathological
conditions, such as myocardia (6, 7), kidney (8), liver (9), bone (10), and dental pulp
(11, 12). In our previous study, we showed for the first time the in situ expression of
CXCR4 in apical papilla and cultured SCAPs (13). The SDF-1a gradient may induce trans-
location of cytoplasmic CXCR4 to the membrane and enhance SCAP transmigration (13).
However, the molecular mechanism involved in the regulatory process of SCAP migration
has not been revealed.

Studies of lymphocytes have shown that SDF-1a, after binding to CXCR4, causes
mobilization of calcium and the activation of multiple signaling pathways, including
phosphatidylinositol 3-kinase (PI3K) and phospholipase C gamma (PLC-g)/protein ki-
nase C (PKC) (14–16). SDF-1a stimulation enhances the tyrosine phosphorylation of
multiple focal adhesion components, including focal adhesion kinase (FAK), paxillin,
p130Cas, CrkII, and CrkL, thus modulating the formation and function of focal
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adhesions in hematopoietic progenitor cells (16, 17). These adhesions
are directly associated with chemotaxis and cell migration (16). PI3K as
well as PKC signaling pathways appear to be required for the SDF-1a–
induced phosphorylation of these focal adhesion components as well as
for cell migration in hematopoietic progenitor cells (18).

In the present study, we hypothesized that PI3K and PKC signaling
pathways are involved in SDF-1a/CXCR4 axis–mediated SCAP transmi-
gration. We investigated in vitro transmigration with inhibitors of PI3K
and PKC signaling pathways. We also evaluated the expression of key
focal adhesion components (FAK, paxillin, and vinculin) and the phos-
phorylated downstream proteins of PI3K and PKC after SDF-1a stimu-
lation to determine the potential role of PI3K and PKC signaling
pathways in SCAP transmigration.

Materials and Methods
Cell Isolation and Culture

SCAPs were isolated as described previously (13, 19). Human
impacted third molars (N = 8) with an open apex were collected
from healthy patients (8 donors aged 16–22 years) in the Oral and
Maxillofacial Surgery Department at Peking University School of
Stomatology, Beijing, P.R. China, with a protocol approved by the
Ethical Committee of Peking University Health Science Center.
Briefly, immediately upon extraction, the apical papilla was
carefully cut off from the root apex. The tissues were minced and
digested in a solution of 3 mg/mL collagenase type I (Worthington,
Lakewood, NJ) and 4 mg/mL dispase (Sigma-Aldrich, St Louis, MO)
for 30 to 60 minutes at 37�C. The isolated cells were seeded and
cultured with alpha modification of Eagle’s medium (Gibco, Grand
Island, NY) supplemented with 15% fetal bovine serum (Gibco),
2 mmol/L L-glutamine (Gibco), 100 U/mL penicillin G, and
100 mg/mL streptomycin (Gibco) and maintained in 5% CO2 at
37�C. Colony formation units of fibroblastic cells were normally
observed within 1 to 2 weeks. These heterogeneous populations of
adherent, clonogenic dental stem/progenitor cells were tested for
their cell surface marker expression by flow cytometry analysis
(positive for STRO-1, CD146, CD90, and CD105 and negative for
CD45). Cells at passage (p) 2 or p3 were used for experiments. Cells
isolated from each tooth/donor were grown, maintained, and used
separately for each independent experiment.

Cell Transmigration Assay
SCAP (p3, 5� 103) were loaded into the upper chamber of an 8-

mm-pore Transwell insert (Corning, New York, NY). There were 4
experimental groups:

1. The negative control group: The lower chamber contained only
culture medium.

2. The SDF-1a group: The lower chamber medium was supplemented
with 100 ng/mL SDF-1a (R&D Systems, Abington, UK) (13).

3. LY/SDF-1a group: SCAPs were preincubated with 10 mmol/L
LY294002 (PI3K Inhibitor, Sigma-Aldrich) for 1 hour before
loading into the upper chamber. The lower chamber medium was
supplemented with 100 ng/mL SDF-1a.

4. GF/SDF-1a group: SCAPs were preincubated with 10 mmol/L
GF109203X (PKC Inhibitor, Sigma-Aldrich) for 1 hour before
loading into the upper chamber. The lower chamber medium was
supplemented with 100 ng/mL SDF-1a.

The chambers were incubated in 5% CO2 at 37
�C for 24 hours.

The nonmigrated cells on the upper side of the membranes were wiped
off, and cells migrated to the lower surface of the membranes were fixed
with 95% ethanol and stained with 0.1% crystal violet for evaluation un-
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der a microscope (DP72; Olympus, Tokyo, Japan). Nine fields under a
200-fold magnification were randomly selected for cell counting.

Cell Counting Kit-8 Assay for Cell Proliferation
SCAPs (p2) were seeded into 96-well plates at 4� 103 cells/well.

Cells were divided into 3 groups: the negative control group and 2
experimental groups each treated with 10 mmol/L LY294002 or
GF109203X. Cells in the LY294002 and GF109203X groups were pre-
treated with inhibitors for 1 hour before being seeded into the 96-
well plates. Cell viability was determined at 24, 36, and 72 hours using
the Cell Counting Kit-8 (CCK-8; Dojindo Laboratories, Kumamoto,
Japan) according to themanufacturer’s instructions. The optical density
was measured with an Elx808 enzyme-linked immunosorbent assay
reader (BioTek, Winooski, VT) at 450 nm.

Cell Double-labeling Immunofluorescence Assay
SCAPs (p2) were cultured on coverslips at 60% confluence. The

treated cells were fixed in 4% paraformaldehyde (Solarbio, Beijing,
China) and washed with 0.01 mol/L phosphate-buffered saline. After
permeabilization with 0.5% Triton X-100 (Sigma-Aldrich) for 15 mi-
nutes, cells were blocked with 10% goat serum albumin (ZSGB-Bio,
Beijing, China) and incubated with primary rabbit antihuman anti-
bodies specific to phosphorylated (p)-paxillin (phospho-paxillin [Tyr
118]; Cell Signaling Technology, Inc, Danvers, MA), p-FAK (phos-
pho-FAK [Tyr 397]; Cell Signaling Technology, Inc), or mouse anti-
human vinculin (Santa Cruz Biotechnology, Inc, Santa Cruz, CA)
followed by secondary antibodies Rhodamine Red-X–conjugated goat
antirabbit immunoglobulin G or Rhodamine Red-X–conjugated goat
antimouse immunoglobulin G (CW-BIO, Beijing, China). Cells were
then incubated with fluorescein isothiocyanate (FITC)-phalloidin
(binds F-action; Sigma-Aldrich) for 30 minutes. The coverslips were
counterstained with 40,6-diamidino-2-phenylindole (ZSGB-Bio, Bei-
jing, China) and mounted for images analysis under a fluorescence mi-
croscope (LSM5; Carl Zeiss, Jena, Germany).

Western Blot
The treated SCAPs (p2) were harvested in radio immunopreci-

pitation assay (RIPA) lysis buffer (Huangxing Bio, Beijing, China)
with protease inhibitor (Huangxing Bio) cocktail on ice for 15 mi-
nutes. The supernatant was collected, and protein concentrations
were determined using a bicinchoninic acid protein assay (Huangxing
Bio). Whole cell lysates were fractionated with 10% sodium dodecyl
sulfate–polyacrylamide gel electrophoresis, transferred onto a poly-
vinylidene difluoride membrane (Huangxing Bio), blocked with 5%
nonfat dry milk (Huangxing Bio), and incubated with primary anti-
bodies to selected protein antigens. The following primary antibodies
were used: anti–p-FAK, anti–p-paxillin, antivinculin, anti–p-p85 (Cell
Signaling Technology, Inc), anti–p-PKC (Cell Signaling Technology,
Inc), and anti–b-actin (Huangxing Bio). Immunoreactive bands
were visualized by using horseradish peroxidase–conjugated second-
ary antibody and Super Enhanced Chemiluminescence Plus (Huangx-
ing Bio) using the LAS-3000 (Fujifilm, Tokyo, Japan) luminescent
image analyzer. Immunoblots were semiquantified using Image J 2X
software (National Institutes of Health, Bethesda, MD). The levels of
p-FAK/FAK, p-paxillin/paxillin, vinculin/b-actin, p-p85/p85, and p-
PKC/PKC were determined.

Data Analysis
All experiments were repeated at least 3 times using cells cultured

from at least 3 different donors. All values are presented as
mean � standard deviation. Statistical analysis was performed with the
Mechanisms of SDF-1a–mediated Transmigration of SCAPs 1077
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SPSS software (version 16.0; IBM SPSS Statistics, Armonk, NY). One-way
analysis of variance was used followed by the least significant difference
test. P values less than .05 were considered statistically significant.

Results
Blocking PI3K or PKC Signaling Pathway Inhibited
SDF-1a–induced Migration of SCAPs

We observed that significantly more cells transmigrated in SDF-1a
groups compared with the other 3 groups (F = 61.286, P < .001).
When SCAPs were pretreated with the inhibitor of PI3K (LY294002)
or PKC (GF109203X), the number of migrated cells in the LY/SDF-1a
and GF/SDF-1a groups significantly decreased compared with that in
the SDF-1a group (P < .05) and the negative control group (LY/
SDF-1a group vs negative control group: P < .05; GF/SDF-1a group
vs negative control group: P < .05), indicating that the chemotactic
migration induced by SDF-1a appeared to be regulated via the PI3K
or PKC pathways (Fig. 1A and B).

To verify that such reduced cell migration by the treatment of the
2 inhibitors was not because of their effect on reduced cell proliferation,
we tested their effects on cell proliferation. As shown in Figure 1C,
LY294002 and GF109203X had no effect on the proliferation of SCAPs.
There was no significant difference between the negative control and the
inhibitor-treated groups (P > .05).

PI3K and PKC Signaling Pathways Were Involved
in SDF-1a–stimulated Cytoskeletal Reorganization
and Focal Adhesion Formation in SCAPs

To examine the downstream effects of PI3K and PKC signaling on
SCAP migration stimulated by SDF-1a, we visualized the cytoskeletal
Figure 1. Inhibition of PI3K or PKC signaling pathways blocked SDF-1a–induce
0.1% crystal violet. Images are representative data of independent experiments
3rd molar at p3). Scale bar = 100 mm. NEG, negative control. (B) The number
were pretreated with inhibitors for 1 hour before loading into the upper cham
group (*P < .05). SCAPs were from sample #1, sample #2 (21-year-old woman
of the inhibitors on the proliferation of SCAPs determined by Cell Counting Kit-8
of cells (mean � standard deviation). Cells in the LY294002 group and GF10920
96-well plates. There was no significant difference between the negative control
#1, sample #2, and sample #3 (all third molars, p2).
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arrangement and focal adhesion formation of treated SCAPs by double
labeling of F-actin (by phalloidin) and 1 of the cell adhesion–associated
proteins (p-FAK, p-paxillin, or vinculin). Our immunofluorescence data
shown in Figure 2 indicate stress fiber assembly and a higher expression
of focal adhesion components, including p-FAK and vinculin, in the SDF-
1a group, whereas disordered fuzzy stress fiber and a lower expression
of focal adhesion were observed in the inhibitor groups (Fig. 2). The
expression levels of p-paxillin were similar between the SDF-1a group
and the negative group, whereas they were lower in the inhibitor groups.

We further confirmed these findings using Western blot anal-
ysis (Fig. 3A). The levels of p-FAK/FAK and vinculin/b-actin in the
SDF-1a group were significantly increased compared with those in
the other 3 groups (p-FAK/FAK: F = 4.142, P < .05; vinculin/b-
actin: F = 8.161, P < .05) (Fig. 3B). However, there was no sig-
nificant difference in the levels of p-paxillin/paxillin between the
SDF-1a group and the negative control group (P > .05). The p-
paxillin levels in the LY/SDF-1a group and the GF/SDF-1a group
significantly decreased compared with those in the SDF-1a group
(P < .05). These results indicate that SDF-1a stimulated cytoskel-
etal reorganization and focal adhesion formation in SCAPs, whereas
specific PI3K and PKC signaling pathways inhibitors could block
these effects.
Phosphorylation of p85 and PKC Was Involved
in the Activated SDF-1a/CXCR4 Axis in SCAPs

To further dissect the specific reactions in the involved PI3K or
PKC signaling pathways after SDF-1a stimulation, we examined the
levels of the p-p85 (PI3K subunit) and p-PKC. As shown in
Figure 4A and B, SDF-1a treatment induced phosphorylation of
d migration of SCAPs. (A) Transmembrane migration of SCAPs stained with
with consistent results. SCAPs were from sample #1 (22-year-old woman,
of migrated cells in the LY/SDF-1a group and the GF/SDF-1a group, which
ber, significantly decreased compared with those in the negative control
), and sample #3 (19-year-old man) (all third molars, p3). (C) The effect
assays. The optical density at 450 nm values represented relative numbers
3X group were pretreated with inhibitors for 1 hour before seeded into the
(nontreated) and the inhibitor groups (P > .05). SCAPs were from sample

JOE — Volume 42, Number 7, July 2016



Figure 2. Immunofluorescence analysis of SDF-1a–stimulated cytoskeletal reorganization and focal adhesion formation in SCAPs. SCAPs were pretreated with
LY294002 (PI3K inhibitor) or GF109203X (PKC inhibitor) for 1 hour and then incubated with SDF-1a for 24 hours. Immunofluorescence labeling of F-actin
stress fiber assembly (green) and a higher expression of focal adhesion components (p-FAK/vinculin, red) were noted in the SDF-1a group, whereas disor-
dered fuzzy stress fiber and a lower expression of focal adhesion were observed in the inhibitor groups. The expression of p-paxillin is similar between the SDF-
1a and negative control groups, whereas it was lower in the inhibitor groups. Nuclear counterstaining was done with 40,6-diamidino-2-phenylindole DAPI
(blue). Images are representative data of independent experiments with consistent results. SCAPs were from sample #1 at p2. Scale bar = 100 mm (for
the large merged image).
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p85 and PKC. Pretreatment with PI3K or PKC inhibitors blocked SDF-
1a–induced p-p85 and p-PKC levels. The ratios of p-p85/p85 and p-
PKC/PKC in the SDF-1a group were significantly increased compared
with the other 3 groups (p-p85/p85: F = 12.867, P < .05; p-PKC/PKC:
Figure 3. Western blot analysis of adhesion protein expression in SCAPs stimulated
and then incubated with SDF-1a for 1 hour. Cells were then harvested for Western b
paxillin, vinculin, and b-actin. Images are representative data of independent experim
third molar at p2). (B) The ratios of p-FAK/FAK, p-paxillin/paxillin, and vinculin/b-a
Image J 2X software. Data from 3 different donors are shown as means� standard d
#4, sample #5 (21-year-old woman), and sample #6 (16-year-old female) (all thi
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F = 10.360, P < .05). The phosphoprotein levels in the LY/SDF-1a
and the GF/SDF-1a groups significantly decreased compared with
those in the SDF-1a and negative control groups (P < .05). The re-
sults indicate that SDF-1a stimulation led to a significant increase
by SDF-1a. (A) Cells were pretreated with LY294002 or GF109203X for 1 hour
lotting and antibody detection of the expression levels of p-FAK, FAK, p-paxillin,
ents with consistent results. SCAPs were from sample #4 (19-year-old woman,

ctin were determined after semiquantitative analysis of the band intensities using
eviation. *P < .05 compared with the negative group. SCAPs were from sample
rd molars, p2.). NEG, negative control.

Mechanisms of SDF-1a–mediated Transmigration of SCAPs 1079



Figure 4. Western blot analysis of phosphorylation of p85 and PKC after SDF-
1a stimulation of SCAPs. (A) SCAPs were pretreated with LY294002 or
GF109203X for 1 hour and then incubated with SDF-1a for 1 hour. Cells
were then harvested for Western blotting and antibody detection of the expres-
sion levels of p-p85, p85, p-PKC, PKC, and b-actin. Images are representative
data of independent experiments with consistent results. SCAPs were from
sample #4. (B) The ratios of p-p85/p85 and p-PKC/PKC were determined
by the same method used for data in Figure 3B. Data from 3 different donors
are shown as means � standard deviation. *P < .05 compared with the nega-
tive group. SCAPs were from sample #4, 5, and 6 at p2. NEG, negative control.

Regenerative Endodontics
of phosphorylation of p85 and PKC, thereby activating the PI3K and
PKC signaling pathways.

Discussion
The present study shows the molecular mechanisms involved in

the SDF-1a–induced transmigration of SCAPs. We found that SDF-
1a–mediated transmigration of SCAPs involved PI3K or PKC signaling
pathways that regulate cytoskeletal reorganization and focal adhesion
formation in SCAPs. SDF-1a treatment can significantly promote the
phosphorylation of p85 and PKC, indicating that PI3K and PKC signaling
pathways are activated after SDF-1a stimulation in SCAPs. These find-
ings provide insights into the signaling mechanisms that underlie
SDF-1a–mediated migration of SCAPs.

In our previous study, we observed that SDF-1a could induce
transmigration of SCAPs (13); here we extended our study to charac-
terize the signaling transduction pathways associated with SDF-1a–
induced migration of SCAPs. Accumulating data have implied that mul-
tiple signaling pathways exist to regulate cell migration, such as PI3K
(20, 21) and PKC signaling pathways (16). Our results revealed that
these 2 signaling pathways are also involved in SDF-1a–induced
SCAP transmigration. We verified that the inhibitors did not affect the
proliferation of SCAPs (Fig. 1C), which corresponds to our previous
finding that SDF-1a has no effect on the proliferation of SCAPs (13).
This suggests that although SDF-1a activates PI3K and PKC pathways,
it does not lead to the pathways that induce cell proliferation. Our pre-
sent study verified that SCAPs, similar to the migration of hematopoietic
cells in response to SDF-1a/CXCR4 axis activation (17), also use PI3K
and PKC pathways for cell transmigration effects. We showed that SDF-
1a–treated SCAPs presented a highly organized stress fiber assembly.
1080 Chen et al.
Such formation of focal adhesion complexes is important to provide
anchoring sites for cell migration (22). Phosphorylation of FAK in-
creases the catalytic activity of FAK and is important for the tyrosine
phosphorylation of paxillin (23). P-paxillin could bind to vinculin,
which promotes its localization (24). We observed that focal adhesion
components, including p-FAK and vinculin, were up-regulated on SDF-
1a stimulation. However, we did not observe a p-paxillin increase in
this study. This may be because focal adhesion dynamics during cell
migration is a continuous process involving assembly and disassembly
during which the level of p-paxillin might fluctuate. A kinetic study of
different time points may be needed to detect the change of p-paxillin.

In conclusion, our present study indicates that both PI3K and PKC
signaling pathways are required to enhance the phosphorylation of focal
adhesion proteins, the stress fiber assembly, and SCAP migration by
SDF-1a stimulation. These findings provide a better understanding of
the molecular mechanisms that regulate the SDF-1a–mediated migra-
tion of SCAPs, which may help establish strategies for cell migration–
mediated dental pulp regeneration.
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