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The aim of this study was to evaluate the antimicrobial effects of non-thermal
plasma-activated water (PAW) as a novel mouthwash in vitro. Three representative
oral pathogens – Streptococcus mutans, Actinomyces viscosus and Porphyromonas
gingivalis – were treated with PAW. The inactivation effect was evaluated using the
colony-forming unit (CFU) method, and the morphological and structural changes
of a cell were observed by scanning electron microscopy and transmission electron
microscopy (TEM). The physicochemical properties of PAW were analysed, and its
influence on the leakage of intracellular proteins and DNA was evaluated. The
results showed significant reduction of Streptococcus mutans within 60 s, of Actino-
myces viscosus within 40 s, and of Porphyromonas gingivalis in less than 40 s. Scan-
ning electron microscopy and TEM images showed that the normal cell
morphology changed by varying degrees after treatment with PAW. Intracellular
proteins (280 nm) and DNA (260 nm) leaked from all three species of bacteria after
treatment with PAW. Reactive oxygen species (ROS), especially atomic oxygen (O),
hydroxyl radical (˙OH), and hydrogen peroxide (H2O2), were generated and led to
strong oxidative stress and cell damage. These results suggest that PAW has
potential use as a novel antimicrobial mouthwash.
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According to the World Health Organization (WHO),
dental caries and periodontal diseases are considered
to be the most important global oral health issues and
major causes of tooth loss (1). The oral cavity is colo-
nized by diverse microflora, and several species of bac-
teria have been implicated as causative agents of
dental caries and periodontal diseases (2). Streptococ-
cus mutans is a gram-positive, facultative anaerobic
bacterium (3, 4) and the most important cariogenic
agent for the development process of dental caries (5,
6). Actinomyces viscosus is a common gram-positive
bacterium in the oral cavity and the primary colonizer
of human tooth surfaces, which plays an important
role in plaque formation and growth (7). Porphy-
romonas gingivalis is associated with aggressive peri-
odontitis (8, 9) and is implicated as a significant
pathogen in human periodontal diseases (10–12).
Therefore, it is necessary to inhibit and remove these
pathogenic bacteria.

Mouthwashes are widely used in oral health-care as
affiliate products (13). The use of antimicrobial mouth-
wash has been proposed as an effective means to con-
trol the levels of oral pathogenic bacteria. Among the
current mouthwashes, chlorhexidine (CHX) has been
widely used in clinics (14, 15). However, CHX has a
number of side effects, such as mucosal erosion, tooth

staining, taste disturbance, and swelling of the parotid
gland. Thus, formulations or compound mouthwashes
without these side effects have long been desired, espe-
cially for those who have undergone oral surgery
(16–18).

Many previous studies have realized that non-ther-
mal plasma is a promising technology because of the
existence of ultraviolet (UV), reactive oxygen species
(ROS), and reactive nitrogen species (RNS) (19, 20).
Plasma-activated water (PAW) is water treated by
cold plasma with multibiological functions. KAM-

GANG-YOUBI et al. have shown that PAW can be
obtained by exposing distilled water to gliding arc
discharges (21). This is because the radical species of
plasma (principally �OH and �NO) are precursors of
other longer-lifespan species [hydrogen peroxide
(H2O2), nitrous acid (HNO2), and nitric acid
(HNO3)] that are responsible for lethal effects (22,
23). Compared with the direct use of a plasma jet,
the dangerous factors of electrical current, thermal
damage of tissue, and UV irradiation can be avoided
(24).

The aim of this study was to investigate the
inhibitory effect of PAW on S. mutans, A. viscosus,
and P. gingivalis, and its main mechanisms of
action.
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Material and methods

Preparation of PAW

The cold plasma-jet device consists of a quartz tube and an
outer copper foil that surrounds a quartz tube. The outer
copper foil is connected to a 10-kHz sinusoidal high-voltage
source with an 18-kV peak-to-peak voltage. The quartz tube
has outer and inner diameters of 0.9 and 0.8 cm, respec-
tively. Figure 1A shows a schematic diagram of the plasma
device, and Fig. 1B shows a photograph of the PAW gener-
ation process. Premixed argon (Ar) and oxygen (O2) [Ar/O2

(98%:2%; v/v); referred to as Ar/O2 (2%) from here on]
was used as the working gas with a flow rate of 5 l min�1.
More details can be found in our previous study (25). Ten
millilitres of sterile distilled water was treated with non-ther-
mal plasma for 20 min to obtain PAW.

Bacterial strains and culture conditions

Streptococcus mutans UA159 was grown on a Brain–Heart
Infusion (BHI) (Oxoid, Basingstoke, UK) plate and incu-
bated aerobically in an atmosphere of 5% CO2 at 37°C
for 48 h. Then, a single colony was picked and placed into
a 1.5 ml EP tube (Eppendorf, Hamburg, Germany) con-
taining 1 ml of BHI broth and incubated at 5% CO2

and 37°C for 12 h until the density of bacteria was
between 1 9 107 colony-forming units (CFU) ml�1 and
5 9 107 CFU ml�1. Actinomyces viscosus ATCC 19246
and P. gingivalis ATCC 33277 were grown anaerobically at
37°C on BHI sheep blood agar plates supplemented with
1 lg ml�1 of haemin, 1 lg ml�1 of L-cysteine, 5 lg ml�1

of yeast extract, and 5 lg ml�1 of vitamin K. After 2 d
(A. viscosus ATCC 19246) and 7 d (P. gingivalis ATCC
33277), a single colony was inoculated into 10 ml of BHI
broth containing 5 lg ml�1 of yeast extract and 5 lg ml�1

of vitamin K. Batch cultures were grown anaerobically in an
MGC AnaeroPack Series (Mitsubishi Gas Chemical Com-
pany, Tokyo, Japan) at 37°C for 2 d (A. viscosus ATCC
19246) or 3 d (P. gingivalisATCC 33277) until the density of
bacteria was between 1 9 107 and 5 9 107 CFU ml�1.

Disinfection procedure

For each bacterial species, 100 ll of cultured bacterial sus-
pension was added into 9.9 ml of fresh PAW and treated
for 10, 20, 40, 60, or 120 s. Then, 10-fold serial dilutions

of 100 ll of the PAW-treated bacterial suspensions were
immediately plated on an agar plate. The bacterial suspen-
sion treated with sterile distilled water was used as the
negative control. To evaluate the response of S. mutans,
A. viscosus, and P. gingivalis to liquid acidity, nitric acid
was used to preset the pH of the water to pH 3. The three
strains were treated with nitric acid (pH 3) for 60 and
120 s. The disinfection of bacteria was evaluated by
counting the number of CFUs on a petri dish. Each
experiment was performed at least three times for each
condition.

Scanning electron microscopy

Bacterial suspensions (10 ml) were centrifuged at 2400 g
for 10 min. The supernatant was discarded and the precip-
itate was treated with 10 ml of PAW (experimental group)
or distilled water (control group) for 40 min. Both groups
were fixed overnight with 2.5% glutaraldehyde, dehydrated
sequentially in ethanol (30%, 50%, 70%, 80%, 90%, and
100%) and dried at 37°C for 12 h. The bacterial suspen-
sions placed on glass slides before being prepared for
SEM. All samples were coated with gold-palladium and
evaluated with a scanning electron microscope (S-4800;
Hitachi, Tokyo, Japan).

Transmission electron microscopy

Bacterial suspensions (10 ml) were centrifuged at 2400 g
for 10 min. The supernatant was discarded, and the pre-
cipitate was treated with PAW (experimental group) or
distilled water (control group) for 40 min. All prepared
bacterial suspensions were fixed for less than 2 h with
glutaraldehyde, and then washed five times with 0.1 M
PBS (pH 7.2). The bacterial suspensions placed on glass
slides before being prepared for TEM. Then, they were
post-fixed for 2 h with 1% osmium tetroxide and
washed five times with PBS. After that, bacterial suspen-
sions were dehydrated in graded ethanol (50%, 70%,
85%, 95%, and 100%), embedded for 2 h in a fixative
(50% absolute ethanol and 50% embedding medium),
and then embedded for 12 h with a pure embedding
medium. Finally, all samples were dried at 60°C for
24 h. Thin sections of the specimens were viewed with a
transmission electron microscope (JEM-1400; JEOL,
Tokyo, Japan).

Fig. 1. (A) Schematic diagram of the experimental arrangement. (B) Photograph of the plasma-activated water (PAW) generation
process.
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DNA and protein leakage

To investigate the leakage of intracellular proteins and
DNA after treatment with PAW, a UV-light spectropho-
tometer (DU 730 Nucleic Acid/Protein Analyzer; Beckman
Coulter, Brea, CA, USA) was used. The group with sterile
water treatment was used as the negative control. After
treatment for 10, 20, 40, 60, and 120 s, the samples were
filtered with 0.22-lm syringe filters to remove the bacteria.
The wavelengths detected were 260 nm (DNA absorbance)
and 280 nm (protein absorbance) (3).

Evaluation of physicochemical properties

The temperature of the PAW was evaluated using a porta-
ble intelligent data logger (TH-210; High-chance High-tech
Science, Beijing, China), and the pH value of the PAW
was monitored using a microprocessor pH-meter (pH 213;
Hanna Instruments, Woonsocket, RI, USA). Hydrogen
peroxide (H2O2) is thought to be related to the antimicro-
bial process of PAW. Thus, the H2O2 concentrations
within 20 min were measured using a Hydrogen Peroxide
Assay Kit (Beyotime, Jiangsu, China).

Optical emission spectroscopy

The contents of the plasma were analysed by optical emis-
sion spectroscopy (OES) using a Multi-Channel Fibre Optic
Spectrometer (AvaSpec-2048-8-USB2; Avantes, Eerbeek,
the Netherlands). The end of the fibre-optic cable was
applied to record the light signals at the bottom of the quartz
tube at approximately 5 mm from the plasma jet. The opera-
tional details can be found in our previous work (26, 27).

Results

Inactivation of PAW

Figure 2 and Table 1 show the cell-survival curves of
S. mutans, A. viscosus, and P. gingivalis treated with

PAW and distilled water. After 20 s of treatment with
PAW, P. gingivalis was the inactivated to a degree cor-
responding to a 5-log reduction, while S. mutans and
A. viscosus needed 40 and 60 s, respectively, of treat-
ment with PAW to achieve a similar level of reduction
(Fig. 2). The numbers of S. mutans and A. viscosus
showed a slight increase, while the number of P. gingi-
valis decreased by about 50% (Table 1), perhaps
because of the low concentration of oxygen in the
water and the fact that oxygen could pass into the
water through contact with water surface (28). Acid
water inactivated P. gingivalis gradually over 120 s
(Table 2). These results demonstrate that PAW can
inactivate S. mutans, A. viscosus, and P. gingivalis effec-
tively.

Scanning electron microscopy and TEM
investigations

From the scanning electron microscopy images
(Fig. 3A,B), the treatment of S. mutans with PAW
resulted in no obvious surface morphology change. In
the case of A. viscosus, the surface morphology chan-
ged from flat to shrunken. The surface morphology of
P. gingivalis changed significantly after treatment with
PAW, and showed distortion and shrinkage. However,
from the TEM images (Fig. 3C,D), the normal cell
structure of S. mutans was fuzzy, and the complete
form was not visible after treatment with PAW. Under
the same conditions, the A. viscosus cell edge was indis-
tinct, and P. gingivalis showed morphological diversity
and cytoplasm shrinkage.

Fig. 2. Disinfection efficacy evaluation of the plasma-acti-
vated water (PAW) treatment group. A. viscosus, Actinomyces
viscosus; CFU, colony-forming units; P. gingivalis, Porphy-
romonas gingivalis; S. mutans, Streptococcus mutans.

Table 1

Disinfection efficacy evaluation of the group treated with
distilled water: a limited disinfection effect was observed

Time (s) S. mutans A. viscosus P. gingivalis

0 2.29 � 1.67 3.13 � 0.50 1.90 � 0.53
10 3.87 � 1.27 4.25 � 1.75 1.67 � 0.34
20 4.10 � 0.87 3.50 � 2.00 1.23 � 0.33
40 4.03 � 0.48 4.00 � 1.50 1.17 � 0.47
60 2.35 � 0.15 3.75 � 0.75 1.30 � 0.25
80 2.35 � 0.15 3.75 � 0.74 1.33 � 0.25
120 3.60 � 0.28 4.00 � 0.50 1.03 � 0.45

Values are given as (means � SD) 9 106 .
A. viscosus, Actinomyces viscosus; P. gingivalis, Porphyromonas
gingivalis; S. mutans, Streptococcus mutans.

Table 2

Inactivation of Streptococcus mutans, Actinomyces viscosus,
and Porphyromonas gingivalis with acid water (pH 3), which
has limited inactivation effect on S. mutans and A. viscosus

Time (s) S. mutans A. viscosus P. gingivalis

0 3.28 � 1.48 2.93 � 0.48 2.32 � 0.92
60 2.77 � 0.88 2.87 � 0.47 1.98 � 0.71
120 2.39 � 1.06 2.60 � 0.35 0.46 � 0.12

Values are given as (means � SD) 9 106.
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DNA and protein leakage

The permeability change of the cell membrane might
lead to the leakage of intracellular DNA and pro-
teins. Figure 4 shows the leakage of both intracellular
protein and DNA from S. mutans, A. viscosus, and
P. gingivalis. For all three strains of bacteria, treat-
ment with PAW led to marked leakage of DNA and
protein in the first 10 s, with the absorbance peak
intensity rapidly increasing for both protein (260 nm)

and DNA (280 nm). When the PAW treatment time
extended beyond 10 s, the absorbance peak intensity
levelled off or even declined. Treatment with distilled
water did not lead to a significant change in the
leakage of DNA and protein from S. mutans and
A. viscosus; however, slight leakage of DNA and pro-
tein were observed from P. gingivalis. The leakage of
DNA and protein further confirmed the results of
scanning electron microscopy and TEM that

A

B

C

D

Fig. 3. Scanning electron microscopy (A, B) and transmission electron microscopy (C, D) images of Streptococcus mutans, Actino-
myces viscosus, and Porphyromonas gingivalis before (A, C) and after (B, D) treatment with plasma-activated water (PAW). The
red arrows indicate the obvious surface morphology change after PAW treatment compared with the control group.

Fig. 4. Leakage of intracellular protein and DNA from Streptococcus mutans, Actinomyces viscosus, and Porphyromonas gingivalis
after treatment with plasma-activated water (PAW). Abs., absorbance.
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treatment with PAW could reduce the integrity of the
bacterial membrane.

Physicochemical properties of PAW

The temperature and pH of PAW were measured. No
drastic increase in the temperature of PAW was
observed during the 20 min of plasma treatment. The
water temperature was approximately 29°C after
20 min (Fig. 5A). However, the pH of plasma-treated
water decreased rapidly during the first 10 min. After
20 min of plasma treatment, the pH value of PAW had
decreased from pH 6 to approximately pH 3 (Fig. 5A).
As shown in Fig. 5B, the concentration of H2O2

increased sharply to 15.64 lM l�1 within 5 min and
then showed a more gradual increase thereafter, to
reach 23.18 lM l�1 after 20 min.

Optical emission spectroscopy

Figure 6 shows the emission spectrum generated by Ar/
O2 (2%) plasma. The whole emission spectrum was
dominated by Ar lines. Atomic oxygen (O) lines at 777
and 844 nm (Fig. 6A insets), as well as hydroxyl radi-
cal (·OH) lines at 316 nm (Fig. 6B), were detected. The
chemical formula is as follows:

O2 þ e� ! 2Oþ e�;

H2Oþ e� ! ·OHþ ·Hþ e�:

Discussion

Dental caries and periodontal diseases are two of the
most troublesome ailments affecting many people, and
both are infectious bacterial diseases. Thus, preventive
measures can be taken by controlling bacterial
infections (29). Non-thermal plasma has been exten-
sively used to inactivate biological species (26), and
PAW has been proven to have a pronounced disinfec-
tion effect (27, 30). Thus, three species of oral bacteria
associated with caries (S. mutans and A. viscosus) and
periodontal diseases (P. gingivalis) were killed by PAW
in this study.

As shown in Fig. 2, the total CFU count of all three
species of bacteria decreased from 5 9 106 CFU to
5 9 102 CFU within 60 s, with a disinfection rate of
up to 99.99%. The results showed that the disinfection
effect of PAW is unique for each species of bacterium,
from strong to weak in the order: P. gingivalis > A. vis-
cosus > S. mutans. This difference in efficacy might be
attributed to the variable structure and characteristics
of the bacteria. As shown by the scanning electron
microscopy and TEM results, the morphology of
PAW-treated P. gingivalis indicated severe cell rupture
and both A. viscosus and S. mutans showed cell shrink-
age. Aerobic bacteria (S. mutans) are less sensitive than
anaerobic bacteria (A. viscosus and P. gingivalis) when
exposed to the same oxidative stress. Moreover, S. mu-
tans and A. viscosus belong to the category of gram-

Fig. 5. Physicochemical property evolution of the water treated with Ar/O2 (98%:2%; v/v) plasma. (A) The water temperature
was approximately 29°C and the pH of the plasma-activated water (PAW) decreased from pH 6 to approximately pH 3 after
20 min of treatment. (B) The concentration of hydrogen peroxide (H2O2) increased to 23.18 lM l�1 after 20 min.

Fig. 6. End-on optical emission spectra of the plasma microjet ranging from 300 to 950 nm. The reactive species atomic oxygen
(O) (at 777 and 844 nm) (A) and hydroxyl radical (�OH) (315–316 nm) (B) were detected. A.U., absorbance units. Ar, argon.
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positive bacteria, and the thickness of the cell wall is
approximately 20–80 nm (31). Porphyromonas gingivalis
belongs to the category of gram-negative bacteria, and
the thickness of the cell wall is approximately 10 nm
(32). The peptidoglycan mesh-like layer outside the
plasma membrane forming the cell wall of gram-posi-
tive bacteria can be up to 50 layers in thickness,
whereas in gram-negative bacteria its thickness is only
one to three layers. The tough cell wall of gram-posi-
tive bacteria has a higher resistance to virulence factors
and maintains the cell morphology. The leakage of
intracellular DNA and proteins was lowest from S. mu-
tans of all three species (Fig. 4), which indirectly proves
the importance of the cell wall in the disinfection effects
of the three bacteria.

The bacterial membrane serves as a key structural
component for resisting biocidal challenges. The leak-
age of intracellular DNA and proteins is a good indica-
tor of membrane damage (33). As shown in Fig. 4,
PAW treatment could lead to a dramatic release of
intracellular DNA and proteins. The optical emission
spectra results indicate that O (Fig. 6A) and ·OH
(Fig. 6B) are present. Because O and ·OH are among
the most reactive and toxic species, their presence could
lead to lipid peroxidation of the lipid bilayer in the bac-
terial membrane, resulting in the cross-link reaction of
the fatty-acid side chain. This could form transient
pores in the cell membrane followed by depolarization
and permeabilization of the cell membrane (34). This
leads to the question why the first 10 s of treatment
resulted in the absorbance peak intensity almost being
reached, followed by a levelling off or decline over a
prolonged time period, for both protein and DNA. It
was shown that the aerobic degradation reaction
started with an increase of the PAW treatment time
(over 10 s). As a result of the existence of many highly
reactive plasma species in the PAW (22, 35), the pro-
teins and nucleic acid leaking out of the exposed cells
decomposed quickly (36).

The temperature of the PAW increased with pro-
longed treatment time, and it reached equilibrium at
29°C after 20 min. The culture temperature of
S. mutans, A. viscosus and P. gingivalis was 37°C.
Thus, the inactivation effect of PAW was not caused
by thermal effects. Streptococcus mutans and A. vis-
cosus are considered as causative agents of dental
caries, and they have the properties of acidogenicity
and acid tolerance (37). However, the optimal pH
for growth of P. gingivalis is pH 6.5–7.0 (38). The
acidification of PAW is mainly a result of the gener-
ation of nitric acid, a hydrogen cation (H+) and a
superoxide anion (O�

2 ·) when exposed to an air envi-
ronment (39), as represented by the following equa-
tion:

H2O
þ þH2O ! HþðH2OÞ þ ·OH:

Consequently, when water reached a pH value of 3,
growth of S. mutans and A. viscosus was not inhibited
during the 120 s treatment time, while P. gingivalis
growth was suppressed for the entire 120 s. However,
Figure 2 shows that almost all P. gingivalis had been

killed after 20 s of treatment with PAW, and so the
impact of pH on P. gingivalis can be ignored. There-
fore, it is concluded that a low pH is not the main rea-
son for the disinfection effect following treatment with
PAW. WELTMANN speculated that acidity and reactive
species are interconnected (40). A lower pH is more
favourable for a reactive species to penetrate a cell
membrane. On the other hand, the acidic conditions
could accelerate chemical reactions, such as those
induced by hydroperoxyl radicals (HOO�) because
hydroperoxyl radicals have a high oxidizing power and
will initiate the peroxidation of fatty acids in the cell
membrane (20, 41). However, dental erosion could
occur at low pH (42). PONTEFRACT et al. (43) recom-
mended that low-pH mouthrinses should not be consid-
ered for long-term (3 wk) or continuous use and never
as prebrushing rinses. Considering that a low pH is
detrimental for the teeth, future studies should try to
increase the pH value of PAW to reduce the related
side effects. The acidification of PAW is mainly a result
of the working gas (air) and the PAW generation time,
and changing the working gas or reducing the
PAW generation time could raise the pH value (44).
IKAWA et al. (41) applied sodium citrate buffer
(pH = 6.5 � 3.7) to neutralize the low pH, but the
inhibitory effect decreased once the pH value exceeded
pH 4.8 . Therefore, future studies should focus on bal-
ancing the inhibitory effect and the pH value.

Hydrogen peroxide is a strong oxidizer involved in
the antimicrobial properties of PAW, especially in
acidic environments. NAITALI et al. (45) noted that
10 lM of acidified H2O2 is capable of reducing bacte-
rial growth by up to 0.4 log. As shown in Fig. 5B, the
concentration of H2O2 increased to 23.18 lM l�1 after
20 min. Thus, the H2O2 in PAW plays a significant role
in the disinfection process:

·OHþ ·OH ! H2O2:

Furthermore, the speculated mechanism of steriliza-
tion of PAW is through ROS, especially free radicals
such as O, ·OH, and H2O2, which are the most impor-
tant germicidal agents. A lower pH value could
enhance the effect of reactive species. These free radi-
cals can damage cell-membrane integrity as well as
cause protein and DNA leakage that consequently lead
to bacterial cell death.

In this study, PAW was shown to be an effective dis-
infection agent for the three pathogenic species of oral
bacteria. The active species caused changes to the bac-
terial cell membrane, resulting in leakage of intracellu-
lar proteins and DNA. All results suggest that PAW
shows promise as a new type of mouthwash to kill or
inhibit the growth of oral pathogenic bacteria. Future
studies should focus on evaluating the biosafety of
PAW on the normal oral tissue and the disinfection
effects of PAW to biofilms rather than bacterial
suspensions.
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