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Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous population that can be
isolated from various tissues, including bone marrow, adipose tissue, umbilical
cord blood, and craniofacial tissue. MSCs have attracted increasingly more
attention over the years due to their regenerative capacity and function in
immunomodulation. The foundation of tissue regeneration is the potential of
cells to differentiate into multiple cell lineages and give rise to multiple tissue
types. In addition,the immunoregulatory function of MSCs has provided insights
into therapeutic treatments for immune-mediated diseases. DNA methylation
and demethylation are important epigenetic mechanisms that have been shown
to modulate embryonic stem cell maintenance, proliferation, differentiation and
apoptosis by activating or suppressing a number of genes. In most studies, DNA
hypermethylation is associated with gene suppression, while hypomethylation or
demethylation is associated with gene activation. The dynamic balance of DNA
methylation and demethylation is required for normal mammalian development
and inhibits the onset of abnormal phenotypes. However, the exact role of DNA
methylation and demethylation in MSC-based tissue regeneration and
immunomodulation requires further investigation. In this review, we discuss
how DNA methylation and demethylation function in multi-lineage cell
differentiation and immunomodulation of MSCs based on previously published
work. Furthermore, we discuss the implications of the role of DNA methylation
and demethylation in MSCs for the treatment of metabolic or immune-related
diseases.

Key words: Mesenchymal stem cells; DNA methylation and demethylation; Multi-lineage
differentiation; Regeneration; Immunomodulation; Immune disease
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Core tip: Mesenchymal stem cells (MSCs) harbor the capacity to regenerate diverse
tissues and can also perform key immunomodulatory functions. DNA methylation and
demethylation are known to modulate stem cell maintenance and differentiation in
embryonic stem cells. However, the role of DNA methylation and demethylation in
MSC-based tissue regeneration and immunomodulation requires further investigation. In
this review, we discuss how DNA methylation and demethylation function in multi-
lineage cell differentiation and immunomodulation of MSCs based on previously
published work. In addition, we discuss the implications of the role of DNA methylation
and demethylation in MSCs for the treatment of metabolic or immune-related diseases.

Citation: Xin TY, Yu TT, Yang RL. DNA methylation and demethylation link the properties
of mesenchymal stem cells: Regeneration and immunomodulation. World J Stem Cells 2020;
12(5): 351-358
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INTRODUCTION
DNA methylation and demethylation are two vital epigenetic regulatory mechanisms
for gene expression. DNA cytosine methylation is a frequently occurring process that
is  orchestrated  by  DNA  methyltransferases  (DNMTs),  which  generate  5-
methylcytosine (5mC)[1]. The methylation process at the 5th cytosine can be reversible,
which is called DNA demethylation. This process has received increased attention
over recent years. Increasingly more researchers began to identify enzymes that could
generate 5-hydroxymethylcytosine (5hmC) from 5mC in mammalian cells. For the
first time, in 2009, TET1 was shown to convert 5mC into 5-hmC[2]. Thereafter, all three
of the TET family proteins (TET1, TET2, and TET3) were demonstrated to catalyze a
similar  hydroxymethylation  reaction[3].  TET  family  proteins  are  also  receiving
increased attention because of their function in DNA demethylation.

In  addition  to  their  function  in  multi-lineage  differentiation  and  tissue
regeneration[4], mesenchymal stem cells (MSCs) also display profound immunomodu-
lation  capacity  via  a  sophisticated  molecular  network[5].  DNA  methylation  and
demethylation are known to modulate stem cell maintenance and differentiation by
activating or suppressing an array of genes[6]. Previous research on DNA methylation
and  demethylation  has  primarily  focused  on  embryonic  stem  cells  and  neural
systems.  Nevertheless,  how  DNA  methylation  and  demethylation  impact  MSC
function remains elusive. Here, we discuss recent studies concerning the effect of
DNA  methylation  and  demethylation  on  MSC-based  regeneration  and
immunomodulation.

OSTEOGENIC DIFFERENTIATION OF MSCS IS REGULATED
BY DNA METHYLATION AND DEMETHYLATION
MSCs hold promising potential for regenerative medicine due to their capacity for
self-renewal and multi-lineage differentiation into tissue-specific cells, which include
osteoblasts, chondrocytes, and adipocytes. During osteogenic differentiation of MSCs,
osteogenic-specific genes such as RUNX2, OPN, COX2, ALP, and OCN[7-11], which are
regulated by DNA methylation, showed increased expression and decreased DNA
methylation. Demethylation was observed at specific CpG regions in the promoters of
osteogenic lineage-specific genes, including Runx2, Dlx5, Bglap, and Osterix, during
osteogenic differentiation in adipose-derived MSCs (Ad-MSCs). Upon demethylation
inhibition, osteogenic gene expression became down-regulated[12]. On the other hand,
Daniunaite et al[13] found that genes encoding the main pluripotency factors, such as
Nanog and Sox2, showed decreased gene expression along with decreased 5hmC
levels during the osteogenic differentiation of Ad-MSCs.

In another study on Ad-MSCs, an age-related decline in proliferation was observed.
Ad-MSCs  isolated  from  old  donors  showed  significantly  impaired  osteogenic
differentiation  capacity  compared  to  young  donors.  Furthermore,  decreased
expression  of  Nanog,  Oct4,  and  Lin28A  and  increased  expression  of  Sox2  were
observed. A simultaneous decrease of global 5hmC in Ad-MSCs from old donors also
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occurred. When 5-azacytidine (5-Aza), a DNMT inhibitor, was used to treat Ad-MSCs
from old donors, increased global 5hmC and increased TET2 and TET3 expression
were observed, which was accompanied by an increase in osteogenic differentiation
capacity[14]. These results suggest that global DNA demethylation levels correlate with
the osteogenesis capacity of MSCs, and that DNMT inhibitors could down-regulate
DNA methylation to improve osteogenesis. Notably, an additional study by Kornicka
et al[15] drew similar conclusions.

Bone marrow MSCs (BMMSCs) are a population of multipotent stem cells isolated
from  bone  marrow  that  harbor  the  capacity  for  self-renewal  and  multi-lineage
differentiation.  The  osteogenic  differentiation  of  BMMSCs  is  also  regulated  by
dynamic changes, as well as a balance of DNA methylation and demethylation. Bone
loss caused by mechanical unloading is partially due to the impaired regeneration
capacity of BMMSCs[16]. When mechanical stimuli were rescued, Dnmt3b was released
from  the  Shh  gene  promoter,  thus  leading  to  promoter  demethylation  and  up-
regulated gene expression. Hedgehog signal was then activated by Shh, promoting
BMMSCs to differentiate into osteoblasts[17]. Yang et al[18] found that in Tet1 and Tet2
double knockout mice, 5hmC levels of the P2rX7  promoter were down-regulated,
leading to miR-293a-5p, miR-293b-5p, and miR-293c-5p accumulation, and a decrease
in BMMSC osteogenic differentiation capacity. Upon re-activating P2rX7, microRNA
secretion from Tet  double knockout BMMSCs was increased, thus partly rescuing
both the osteopenia phenotype and BMMSC function.

Mechanisms of TET-mediated DNA demethylation in distinct MSCs vary due to
their diverse sources. When small hairpin RNA lentiviral vectors were transfected to
knock down TET1, the proliferation rate and odontogenic differentiation capacity of
human dental pulp stem cells were significantly suppressed. This indicated that TET1
plays an important role in dental pulp repair and regeneration[19]. In another study
focusing on human BMMSCs, TET1 recruited other epigenetic modifiers, including
SIN3A and EZH2, to inhibit the osteogenic differentiation of BMMSCs in an indirect
manner.  On the other hand,  TET2 was found to directly promote the osteogenic
differentiation of BMMSCs[20]. The underlying mechanisms of how the TET family
proteins regulate MSC function from distinct sources require further investigation.

ADIPOGENIC DIFFERENTIATION OF MSCS IS RELATED TO
DNA METHYLATION AND DEMETHYLATION
Noer et al[21] reported that in undifferentiated Ad-MSCs, the promoters of adipogenic
genes, including LEP, PPARγ2, FABP4 and LPL, are hypomethylated, in contrast to
myogenic or endothelial genes. During adipogenic differentiation, although specific
CpG sites of the LEP promoter undergo demethylation, the global methylation status
of LEP, PPARG2, FABP4, and LPL promoters across different Ad-MSC clones remains
stable. Yang et al[18] showed that Tet1 and Tet2 small interfering RNA treatment does
not alter the adipogenic differentiation capacity of BMMSCs.

Barrand  et  al[22]  showed  that  in  adipose  MSCs,  the  promoter  of  OCT4  was
hypermethylated  consistent  with  its  repression.  Melzner  et  al[23]  found  that  the
promoter  of  leptin  underwent  extreme demethylation  (9.4% ±  4.4%)  during  the
maturation of human preadipocytes toward terminally differentiated adipocytes.
What’s  more,  methyl-CpG  binding  proteins  could  bind  to  specific  sites  in  the
promoter and repressed leptin expression. Fujiki et al[24]  reported that during the
differentiation of 3T3-L1 preadipocytes to adipocytes, the hypermethylated PPARγ2
promoter was progressively demethylated, while 5-Aza could increase the expression
of  PPARγ2,  indicating  that  the  methylation  of  its  promoter  inhibited  the  gene
expression.

Overall,  additional  research  on  the  dynamics  of  DNA  methylation  and
demethylation during adipogenesis from different MSC sources is necessary.

CHONDROGENIC DIFFERENTIATION IS REGULATED BY
DNA METHYLATION AND DEMETHYLATION
DNA methylation and demethylation status also change during MSC differentiation
into chondrocytes.  Chondrogenic  differentiation of  Ad-MSCs and BMMSCs was
associated with a < 50% reduction in methylation rates at two specific CpG sites in the
COL10A1  gene, and transcription of this gene was strongly induced[25].  Ito et al[26]

discovered that 5hmC increased during chondrogenic differentiation of C3H10T1/2, a
MSC line, and that TET1 expression was significantly up-regulated. Furthermore, Tet1
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knockdown resulted  in  a  marked decrease  in  the  expression  of  chondrogenesis
markers  such  as  Col2  and  Col10.  In  addition,  5hmC  in  the  Igf1  promoter  is  a
preferable binding site for TET proteins in chondrocytes. Additional targets of Tet
genes,  as  well  as  other  enzymes  that  function  in  DNA  methylation  and
demethylation, need to be identified in order to reveal the underlying mechanisms of
chondrogenic differentiation of MSCs.

Lin et al[27]  found that stepwise preconditioning–manipulated BMMSCs showed
improved cell proliferation and chondrogenic differentiation potential in vitro and
enhanced therapeutic  effect  on the progression of  osteoarthritis  in  vivo,  and one
mechanism of that is the reduction in CpG methylation at the promoters of Nanog and
Oct4. Pollock et al[28] demonstrated an experimental DMSO-free formulation which
could improve post-thaw function of MSCs including chondrogenesis, as DMSO is a
strong  inducer  of  demethylation  which  may  affect  the  potential  of  MSCs  for
therapeutic  use in treatment of  human diseases.  These studies reminded us that
epigenetic modification of MSCs could be a promising approach to improve their
therapeutic effects.

These  results  regarding  DNA  methylation  and  demethylation  indicate  that
hypomethylation of specific genes, such as Runx2, Opn, Dlx5, Osterix, Col2, and Col10,
play important roles in multi-lineage differentiation of and tissue regeneration by
MSCs (Figure 1).

MYOGENIC DIFFERENTIATION ASSOCIATED WITH DNA
DEMETHYLATION
Cardiogenic differentiation is another important property of MSCs, and stem cell
therapy for cardiovascular diseases is now in clinical trial[29]. Bhuvanalakshmi et al[30]

found that in differentiated cardiomyocytes from MSCs, six out of the ten CpG islands
of the promoter regions of Nkx2.5, the early cardiac gene, underwent demethylation.
What’s more, the CpG promoter demethylation of sFRP4, a Wnt antagonist, was also
observed. This result is consistent with the previous findings that 5-Aza treatment of
BMMSCs inhibited the ventricular scar from thinning and expanding, minimized left
ventricular chamber dilatation, and thus improved myocardial function[31]. Antonitsis
et al[32] treated hBMMSCs with 5-Aza in vitro to induce them to differentiate towards a
cardiomyogenic  lineage.  Nakatsuka  et  al[33]  also  used  5-Aza  to  investigate  the
myogenic  differentiation  potential  of  mouse  dental  pulp  stem  cells.  DNA
demethylation induced by 5-Aza and forced expression of Myod1 upregulated the
muscle-specific transcriptional factors such as Myogenin and Pax7.

IMMUNOMODULATION OF MSCS ASSOCIATED WITH DNA
METHYLATION AND DEMETHYLATION
Aside from tissue regeneration, MSCs play an important role in immunomodulation,
which may prove critical for treating a variety of immune diseases such as colitis,
arthritis, and systemic lupus erythematosus[34-36]. Immunomodulation by MSCs relates
to the secretion of extracellular matrix proteins[37] as well as a variety of cytokines
including IL-2, IL-4, IL-10, TNF-α, and INF-γ[38-40]. MSC immunoregulation can also
occur through cellular contacts[40-42]. B cell proliferation was found to be inhibited by
human MSCs, not through the induction of apoptosis but through G0/G1 cell cycle
arrest[43]. MSCs may suppress T cell proliferation, cytokine release, cytotoxicity, and
Th1/Th2 balance[44,45].

Of  late,  how  DNA  methylation  and  demethylation  regulate  MSC-induced
immunomodulation has received increasingly greater attention. Yang et al[46] found
that  Tet1-  and Tet2-mediated Foxp3  demethylation plays a significant  role in the
differentiation  of  regulatory  T  cells  as  well  as  the  maintenance  of  immune
homeostasis. Khosravi et al[47] reported that MSCs could enhance the demethylation of
the  Treg-specific  demethylated  region  upon  cell-cell  contact,  and  MSC-based
induction of regulatory T cells is associated with direct modifications of the RUNX
complex  genes  (RUNX1,  RUNX3,  and  CBFB).  Yu  et  al[48]  found  that  the  down-
regulation of both TET1 and TET2 leads to hypermethylation of the DKK-1 promoter,
which leads to  activation of  the Wnt/β-catenin signaling pathway and thus up-
regulates Fas ligand (the FasL gene) expression in periodontal ligament stem cells.
This in turn enhances their immunomodulatory ability, which is demonstrated by
their  elevated capacity  to  induce  T  cell  apoptosis.  Taken together,  these  results
demonstrate a significant role for TET-mediated DNA demethylation in MSC-based
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Figure 1

Figure 1  Hypomethylation of specific genes in mesenchymal stem cells drives multi-lineage differentiation and tissue regeneration. MSCs: Mesenchymal
stem cells.

immunomodulation (Figure 2). Nevertheless, further investigations are required to
reveal whether the methylation of MSCs is involved in regulation of other immune
cells such as macrophages and natural killer cells and the underlying mechanisms.

IMPLICATIONS FOR DISEASE TREATMENT
As previously mentioned, DNA methylation participates in the regulation of gene
expression, which may contribute to metabolic diseases when there is an imbalance in
DNA methylation vs  demethylation. García-Ibarbia et  al[49]  compared bone tissue
samples from patients with osteoporotic hip fractures and osteoarthritis. Their results
showed that Wnt pathway activity is reduced in patients with hip fractures compared
with those with osteoarthritis.  Additionally,  six genes,  including FZD10,  TBL1X,
CSNK1E, SFRP4, CSNK1A1L, and WNT8A, showed significantly different methylation
rates between both groups. FZD10, CSNK1E, TBL1X, and SFRP4 are hypermethylated
in osteoarthritis, while WNT8A and CSNK1A1L are hypomethylated compared with
fractures.  This  result  may help explain the distinctions in Wnt pathway activity
between the two groups. MSCs from spinal ligaments with ectopic ossification largely
differentiated into osteogenic lineage. Chiba et al[50] found that MSCs isolated from the
spinal  ligaments  of  ossification  from  yellow  ligament  patients  showed  higher
expression  of  GDNF  and Wnt5a,  which  are  hypomethylated  compared with  the
control group. This result indicates that osteogenic features of MSCs from patients
with  ossification  of  the  yellow  ligaments  are  promoted  by  GDNF  and  Wnt5a
demethylation.

In  2002,  Bartholomew  et  al[51]  first  reported  that  MSCs  harbored  immuno-
suppressive functions by demonstrating their ability to inhibit a mixed lymphocyte
response in vitro as well as prevent rejection in a baboon skin allograft model in vivo.
The immunosuppressive capacities of MSCs have therein provided new therapeutic
insights into immune-mediated disease treatments.  Centeno et al[52]  reported that
autologous MSCs and physiologic doses of dexamethasone could increase meniscus
volume of the human knee. In addition, MSCs can relieve symptoms of multiple
sclerosis,  multiple  system atrophy,  and amyotrophic  lateral  sclerosis  in  varying
degrees[53,54]. How DNA methylation and demethylation function in MSC therapy for
immunological diseases necessitates further exploration.

CONCLUSION AND PERSPECTIVE
Although a wealth of research has investigated MSC therapy, including hundreds of
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Figure 2

Figure 2  TET-mediated demethylation functions in regulatory T cell differentiation and mesenchymal stem cell-induced T cell apoptosis. MSCs:
Mesenchymal stem cells; Treg: Regulatory T cells.

MSC-based clinical trials that have been administered, the mechanisms that underlie
the multiple distinct MSC functions remain elusive. This review sheds light on the
roles  that  DNA  methylation  and  demethylation  play  in  regulating  MSC-based
regeneration and immunomodulation, although it is possible that we overlooked a
few studies due to our literature resource limitations. However, the precise function
of  DNA  methylation  and  demethylation  in  different  MSC  types,  as  well  as  the
associated  underlying  mechanisms,  remain  to  be  thoroughly  investigated.  This
knowledge would inform the development of novel approaches for enhancing MSC-
based tissue regenerative and immune therapies.
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