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In spite of the many imaging modalities used in clinics, the one that best reflects the true delineation of
skull-base (infratemporal fossa, ITF) malignancies is still unknown. In order to compare the tumor
recognition capabilities of different imaging modalities, established murine models and patients with
skull-base tumors were evaluated by computer tomography (CT), magnetic resonance (MR) imaging, and
fluorine-18 fluorodeoxyglucose (18FDG) positron emission tomography (PET) for delineation of gross
tumor volume (GTV).

PET, MR imaging, and CT enhanced by iodine staining were all sensitive to, and able to recognize, the
skull-base tumor in the murine model. No significant difference (p > 0.9999) was observed between
average GTV according to MR imaging (176.67 ± 19.6 mm3) and the histological measurement result
(170.23 ± 22.24 mm3) for the murine model. In contrast, the GTVs according to CT (88.77 ± 13.03 mm3,
p < 0.0001) and 18FDG PET (35.67 ± 6.56 mm3, p < 0.0001) were much smaller.

In nine patients for whom the three modalities were available, tumor volume comparisons tended to
be consistent with the murine model data. According to both the established murine model and clinical
patient data, MR imaging possessed the optimal ability to recognize tumor contours.

© 2019 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights
reserved.
1. Introduction

The human skull comprises the neurocranium and facial skel-
eton. The skull base forms the floor of the cranial cavity and
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separates the brain from other facial structures (Jin et al., 2016). The
skull base can be divided into the anterior, middle, and posterior
regions (Francies et al., 2018). The complexity of this anatomical site
poses surgical challenges to neurosurgeons, otolaryngologists,
head-and-neck surgeons, and maxillofacial surgeons alike. The
rapid development of imaging technology, along with advanced
digitally aided surgical techniques, such as navigation technology
and/or robotic surgery, have led to great advances in the treatment
of skull-base tumors (Guo et al., 2015a; Zhu et al., 2017).

Various types of tumor occur on the lateral side of the middle
skull (infratemporal fossa, ITF), with treatment carrying a high risk
of injuring vital neurovascular structures (IX-XII cranial nerves,
internal carotid artery, and internal jugular vein) (Guo et al., 2015a;
DePowell et al., 2014). Many different approaches can be used to
Elsevier Ltd. All rights reserved.
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reach this space during surgery, but these often need incisions in
the face (Sanna et al., 2014; Guo and Guo, 2014). As unsettling as
this sounds, it is often necessary in order to reach the skull base and
treat the problem that is present. Endoscopic surgery is sometimes
chosen to avoid any external incision and it is considered to be
‘minimally invasive’ (Giovannetti et al., 2018; Gras-Cabrerizo et al.,
2013). When a malignant tumor is adjacent to the vital neuro-
vascular structures referred to above, it is difficult to achieve a clear
surgical margin.

Supplementary postoperative treatment, such as stereotactic
radiotherapy, could help enhance the treatment of skull-base ma-
lignancies. Advanced image-guided software can help to precisely
locate a hard-to-reach skull-base tumor in order to administer a
small, highly targeted dose of radiation to slow the growth of the
tumor, without affecting nearby healthy tissues (Fossati et al.,
2016). But it is hard to distinguish the remaining tumor from sur-
rounding normal tissues in postoperative and/or patients with
recurrence due to structure distortion (Guo et al., 2015b). In addi-
tion, the residual metal hemostatic clips or brachytherapy seeds in
the surgical field will cause artifacts in postoperative computed
tomography (CT) images, which can influence decisions regarding
future radiotherapy (Dolati et al., 2015; Valentino et al., 1991).

CT, magnetic resonance (MR) imaging, and fluorine-18 fluo-
rodeoxyglucose (FDG) positron emission tomography (PET) are
frequently used to evaluate recurrent skull-base tumors (Daisne
et al., 2004). Multimodality imaging fusion technology was
applied to deal with the above problems in our clinical work. With
the same coordinate system, the tumor contours indicated by
different modalities were not often consistent with each other, but
which modality was the most optimal one for skull-base tumor
contour recognition remained unclear.

In order to evaluate the role of different imaging techniques in
the recognition of skull-base tumors, a murine model with skull-
base tumor was established. We found that ultrasound when
combined with fluorescence was effective during tumor cell
transplantation, and also to ascertain successful model establish-
ment. Multiple imaging methods, such as CT, MR imaging, and PET,
were used to confirm the skull-base tumor formation. Finally,
histology-based gross tumor volume (GTV) measurements were
used to compare the recognition abilities of the three imaging
modalities.
2. Materials and methods

2.1. Mice

A total of six female BALB/c nudemice (4e5 weeks old; 12e14 g)
were supplied by Beijing Vital River Laboratories. All mice were
housed under standard conditions in the animal facility of Peking
University Hospital and School of Stomatology (PKUSS). All pro-
cedures were performed according to the Peking University Health
Science Center Animal Research Committee-approved protocol
(LA2018247). All mice were accustomed to their new surroundings
for 1 week prior to the start of the experiment.
2.2. Cell culture

WSU-HN-6-line human squamous cell carcinoma (SCC) cells
were first cultured and immortalized from human tongue SCC at
Wayne State University (Cardinali et al., 1995). All cells were
cultured in DMEM (Gibco, Rockville, MD, USA) containing 10% (v/v)
FBS (HyClone, Logan, UT, USA), 100 U/ml of penicillin, and 100 mg/
ml streptomycin at 37 �C, in a humidified atmosphere with 5% CO2
(Kim et al., 1997).
2.3. Generation of HN-6 cell line with expression of green
fluorescent protein (GFP)

For GFP gene transduction, 20% confluent HN-6 cells were
incubated with GFP-lentivirus supernatants from the 293T pack-
aging cells for 72 h. High GFP-expression cell clones were selected
by puromycin (Selleck Chemical, Houston, TX, USA). Cell clones
were visualized by fluorescence microscopy to detect GFP.

2.4. Animal experiment

The skull-base tumor animal model was induced by injection of
WSU-HN-6-GFP cell lines via a submandibular approach. A total of
2 � 105 HN-6 cells in 20 mL PBS were implanted in nude mice by
stereotaxic injection into the ITF space. The procedure was carried
out under ultrasonographic guidance (VisualSonics Vevo® 1100)
(Supplementary Figure 1).

2.5. Primary assessment of animal model

All animals were screened by ultrasonography and fluorescence
detection once aweek after the cell injection, until their euthanasia
3 weeks later via carbon dioxide overdose and cervical dislocation.
A prewarmed ultrasound gel (Aquasonic, Parker Laboratories,
Fairfield, NJ, USA) was applied to the skin of submandibular area to
facilitate sound transmission and to reduce contact artifacts. The
potential tumor was visualized using a 40 MHz ultrasound probe.
All mice underwent in vivo imaging in a supine position using an
IVIS® Spectrum in vivo system (PerkinElmer Inc., Waltham, MA,
USA). The system captured fluorescent light in targeted organs
using GFP filter sets with an excitation wavelength of 480 nm, and
emission wavelength of 520 nm. Imaging data were recorded and
analyzed using the Living Imaging 4.4 software package (Perki-
nElmer Inc).

2.6. Imaging assessment for the animal model

Six mice underwent live scanning with MR imaging and PET/CT
under anesthesia. Post-euthanasia CT scanning was carried out on
all fixed head specimens before and after 4 days of 3.75% Lugol's
iodine staining.

2.7. Living MR imaging and PET/CT analysis

For MR imaging and PET, mice were anesthetized with 2e3%
isoflurane mixed in oxygen. Mice were placed in a supine position,
lying on an adjustable platform. A Bruker 94/20 9.4T (Bruker,
Ettingen, Germany) MR imaging system was used. Gradient
strength was 660 mTm�1. MR imaging was performed with a
gradient echo sequence with the following parameters: TE 10 ms,
TR 200ms, flip angle 70�, receiver bandwidth 52 Hz per pixel, echo-
shift to 25% of readout period, FOV 26 � 26 � 16 mm, matrix size
64 � 64 � 16 mm, actual spatial resolution 410 � 410 � 1000 mm
(Massot et al., 2012).

During the PET/CT examination procedure, a heparin-coated
catheter was placed in the tail vein for free-radical injection. 500
uci/mice 18F-FDG in 100 mL saline was manually injected for 60 min
prior to the 15 min’ static scanning acquisition with an Inveon PET
scanner (Siemens, Germany). The PET images were corrected for
attenuation, scatter, normalization, and camera dead time, and
coregistered with CT images. The tumor uptake of 18F-FDG and
volume measurement were calculated in terms of the standardized
uptake value (SUV) in the three-dimensional regions of interest
(ROIs) (Su et al., 2018). Mice were then euthanized immediately
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after PET scanning, and immersed in 4% paraformaldehyde over-
night for the following analysis.

2.8. Post-euthanasia CT analysis

Intact skulls were dissected and stained with 3.75% Lugol's
iodine solution for 4 days (Jeffery et al., 2011). Samples were
radiographed using a CT device (Inveon MM Gantry-STD, Siemens,
Germany) in the PKUSS Imaging Center. Images were collected at a
resolution of 9 mm using 60 kVp and 220 mA for the X-ray source.

2.9. Histology

Following decalcification in 20% EDTA for 2e4 weeks, samples
were passed through serial concentrations of ethanol for paraffin
embedding. After sectioning into 9e10 mm slices using amicrotome
(Leica), hematoxylin and eosin (H-E) staining and Pan-Keratin
(1:1000, Proteintech Group, Inc, Rosemont, PA, USA) immunohis-
tochemical (IHC) staining were carried out in deparaffinized sec-
tions following standard procedures. Bright-field microscopy and
stereomicroscopy (Leica) were used to visualize and capture the
serial axial views of the skull-base tumor.

2.10. Patient selection

The study was approved by the Institutional Biomedicine Ethics
Committee of PKUSS (PKUSSIRB-2013039). Nine patients with
malignant tumors of the ITF were included in the study after
obtaining their informed consent. All patients underwent contrast
CT, MR imaging, and FDG PET within a 2-day period.

2.11. Delineation of gross tumor volume (GTV)

CT, MR, and FDG-PET imaging data from the murine model were
recorded in DICOM format and imported into iPlan software
(Brainlab) to perform delineation of GTV. For CT, GTVs were
delineated from images with fixed-display window settings (center
0 HU, width 300 HU). For MR imaging, GTVs were initially deter-
mined from the T2-weighted images. For PET, GTVs were delin-
eated automatically using a segmentation algorithm based on the
measured signal-to-noise ratio (Daisne et al., 2004).

For the patients’ imaging data, GTVs were determined from
three-dimensional visualization of gross tumor infiltration on the
iPlan software. One section in fivewas captured by stereoscope, and
tumor volume calculated using outline sizes in ImageJ 6.0 software.
Tumor volume was calculated using the formula V ¼ (W2 � L)/2
(Faustino-Rocha et al., 2013). This approach was then used to
compare volumes ascertained with the different imaging methods.

2.12. Statistics

The GTVs obtained from CT, MR, PET, and histological specimen
images were compared firstly using one-way ANOVA analysis to
determine significance for the different pairs of imagingmodalities.
When the statistical results were significantly different (p < 0.05),
GTVs from CT, MR, and PET were compared with the histological
results again. Adjustments for multiple comparisons were made
using Tukey's method (0.05/3). The patients' GTVs obtained from
CT, MR, and PET were analyzed in the same way. All statistical
calculations were performed with Graphpad Prism (version 7.0). A
p-value < 0.05 was considered to represent a significant difference.
Statistical data were presented as mean ± SD. Qualitative analysis
(Q.X.L, R.Y, Y.X.G) of GTVs was also performed for all imaging mo-
dalities and for the macroscopic specimens.
3. Results

3.1. Primary assessment of animal model

Non-traumatic ultrasonography and in vivo fluorescence imag-
ing methods were used to confirm skull-base tumor formation in
all animals. An obvious asymmetrical appearance was detected via
ultrasonography 3 weeks after tumor cell injection. It was harder to
distinguish the cervical vessels on the right-hand, tumor-cell-in-
jection side compared with the non-treatment left-hand side
(Supplementary Figure 2A). Fluorescence imaging also showed
bright signals close to the right submandibular area, whereas no
signal was found on the left side (Supplementary Figure 2B).

3.2. CT, MR imaging, and PET analysis of animal model

Original CT datawere imported using iPlan software for imaging
analysis. CT was easily able to indicate bone invasion of the skull
base, but could not indicate tumor location before Lugol's iodine
staining (Supplementary Figure 3). After iodine staining, the skull-
base tumor could be easily recognized from the surrounding
muscles (Fig. 1A, B).

The advantage of MR imaging for displaying soft tissue was
demonstrated clearlywhen comparedwith stained CT imaging. The
tumor outline and circumambient muscle or brain tissue could be
distinguished during imaging analysis (Fig. 1C, D).

PET was also used to confirm tumor formation in our animal
model. Compared with non-treatment control mice, there was an
obvious high-metabolism tumor under the brain and eyes
(Fig. 1EeH). The tumor outline from PET imaging seemed less
extensive than with CT or MR imaging. The mean SUV of the three-
dimensional region of interest was around 2.75.

3.3. Tumor volume comparison between different imaging methods

H-E staining data indicated the skull-base tumor formation. In
the continuous sections, tumor outlines were clearly detected deep
in the masseter muscle and below the skull base (Fig. 2B). Immu-
nohistochemical staining analysis showed that the tumor was
epithelial-derived squamous cell carcinoma (Fig. 2C, D).

Tumor volumes according to CT, MR imaging, and PET were
calculated with image-analyzing software through continuous
outlining of the three-dimensional tumor region or using the
highemetabolism activity associated with malignant tumors. For
the skull-base tumors, the mean GTV established by MR imaging
(176.67 ± 19.6 mm3) was closer to the reference value derived from
H-E-stained slide measurements (170.23 ± 22.24 mm3, p > 0.9999),
while GTVs from CT and PET were significantly different from the
histological results (88.77 ± 13.03 mm3 [p < 0.0001] and
35.67 ± 6.56 mm3 [p < 0.0001], respectively) (Fig. 2E).

3.4. Comparison of tumor recognition ability of different imaging
techniques in clinical patients

Nine cases of malignant tumor invasion into the ITF were pre-
operatively evaluated using contrast CT, MR imaging, and PET ex-
amination. The imaging data were imported into iPlan software,
and merged into the same coordinate system. In case No.1, MR
imaging was able to indicate tumor contours more clearly and
precisely than contrast CT or PET. Tumor volumes for the same
patient in descending order of size were established by MR imag-
ing, CT, and PET. The maxillary tuberosity showed clear signs of
bone invasion in MR imaging, but seemed normal in contrast CT.
While PET only indicated high-metabolism regions, a much
reduced tumor contour was observed thanwith CT andMR imaging
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Fig. 1. CT (stained) and MR imaging indicating tumor formation below the skull base. (AeB) Stained CT showing tumor formation and bone invasion (indicated by white arrows).
(CeD) MR imaging showing tumor formation located close to the brain. The tumor, brain and tongue was labeled as purple, green and blue color respectively. (EeH) Representative
PET images of the murine model, with the skull base tumor indicated by yellow arrows. The dotted circles indicate location of the eyes. Scale bars ¼ 1 mm.
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data (Fig. 3AeI). Tumor volume comparisions showed MR imaging
to be more sensitive in the delineation of skull-base (ITF) malig-
nancies (Table 1 and Fig. 3J).

4. Discussion

While skull-base tumors offer many challenges in a clinical
setting, there is no optimal animal model used to investigate their
biological behavior (Jarrahy et al., 1999; Vora, 2017). In our previous
investigation, the pathological types of ITF malignant tumor were
widely varied, with squamous cell carcinoma accounting for nearly
one third of cases. For a skull-base tumor, knowing its correct
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Table 1
Summary of patient data.

Patient Primary or recurrent Histological findings

No./age/sex

1/54/male Recurrent SCC
2/45/male Recurrent SCC
3/54/male Primary SCC
4/63/male Primary SCC
5/53/male Recurrent Rhabdomyosarcoma
6/66/male Recurrent ACC
7/47/male Recurrent Synovial sarcoma
8/9/female Recurrent Rhabdomyosarcoma
9/6/male Recurrent PNET
Mean

SCC, squamous cell carcinoma; ACC, adenoid cystic carcinoma; PNET, primitive neuroect
*ANOVA analysis of GTVs for nine cases with MRI and CT; p ¼ 0.0358 and p ¼ 0.7946, re
location and its relationship with surrounding vital vessels could
help to guarantee safe, micro-invasive surgery (Blake et al., 2014;
Iida and Anzai, 2017). Furthermore, many cases of skull-base ma-
lignancies that are not resected with safe margins need post-
operative adjuvant radiotherapy to obtain better control of tumor
growth (Johnson and Barani, 2013). Therefore, understanding the
properties of different imaging methods in detecting tumor con-
tours requires thorough exploration.

Our skull-base tumor murine model successfully mimicked a
clinically common tumor type. Ultrasonographic guidance reduced
the risk of cervical vessel injury when transferring tumor cells into
the ITF space. Moreover, ultrasonography and in vivo fluorescence
C
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ed by contrast CT, MR imaging, and PET. (AeC) The tumor is indicated in green (contrast
te system. (DeI) Tumor counters derived from contrast CT, MR imaging, and PET data
maging data are labeled in Figures DeF.

GTV-MRI (cm3) GTV-CT (cm3) GTV-PET (cm3)

48.35 19.44 14.95
44.14 3.94 5.20
33.43 17.73 18.29
30.60 22.11 17.64
38.01 20.77 19.65
6.97 3.33 4.52
70.33 67.41 26.60
18.64 4.78 7.78
16.46 6.05 5.14
34.1 18.39 13.31*

odermal tumor.
spectively.
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imaging allowed non-invasive determination of whether the tumor
had formed in each model animal. Once tumor formation was
confirmed, several model imaging methods (live MR imaging, PET
scans, and stained CT scans) were used to evaluate tumor growth.
The objective appraisal of different imaging methods for tumor
volume evaluation for all malignancies was achieved through
comparison with the gold-standard value generated by H-E and
Pan-Keratin IHC staining analysis (Ayers et al., 2010; Cavalcanti
et al., 2004). As a consequence, MR imaging was found to be the
most sensitive method for ascertaining gross tumor volume, while
CT helped the assessment of bone changes (Ramasawmy et al.,
2016; Thust and Yousry, 2016). The glucose metabolic changes in
skull-base malignancies highlighted by PET were not uniform, and
so could not accurately represent the real scope of tumor invasion.
These specific characteristics of the different imaging methods
were also demonstrated in our clinical cases.

A major finding of our study, which could have tremendous
implications for navigation-guided surgery and radiation therapy
treatment planning in patients with skull-base malignancies, was
that the GTVs delineated at MR imaging were by far the closest to
the reference values calculated from histological specimens. It is
suggested that when the surgical resection of malignant skull-base
tumors is planned, then MR imaging combined with CT examina-
tion is recommended. PET is important in judging the nature of
malignant tumors and the extent of systemic metastasis. However,
it is not suitable for tumor evaluation in terms of quantitative and
locational characteristics.

This study has some limitations that need to be pointed out. The
observation samples were not very large in both the animal and
clinical studies. Further prospective clinical studies with larger
sample sizes and longer follow-up terms are necessary.

5. Conclusion

In summary, an animal model for skull-base malignancy was
successfully established using our method. After verification and
evaluation with various imaging methods, the potential role of MR
imaging for the delineation of GTV in skull-base malignancies has
been demonstrated. The efficacy of this modality on the delineation
of the surgical target could help in designing the surgical strategy
for full removal of skull-base tumors, and reduce the possibility of
recurrence. The impact of this conclusion on radiation dose allo-
cation requires further evaluation.
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