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Saliva is a vital mediator in the oral cavity. The dysbiosis of free bacteria in saliva might be
related to the onset, development, prognosis, and recurrence of periodontal diseases, but
this potential relationship is still unclear. The objective of this study was to investigate the
potential roles of the free salivary microbiome in different periodontal statuses, their
reaction to nonsurgical periodontal therapy, and differences between diseased individuals
after treatment and healthy persons. We recruited 15 healthy individuals, 15 individuals
with gingivitis, and 15 individuals with stage I/II generalized periodontitis. A total of 90
unstimulated whole saliva samples were collected and sequenced using full-length
bacterial 16S rRNA gene sequencing. We found that as the severity of disease
increased, from healthy to gingivitis and periodontitis, the degree of dysbiosis also
increased. A higher abundance of Prevotella intermedia and Catonella morbi and a
lower abundance of Porphyromonas pasteri, Prevotella nanceiensis, and Haemophilus
parainfluenzae might be biomarkers of periodontitis, with an area under curve (AUC)
reaching 0.9733. When patients received supragingival scaling, there were more
pathogens related to recolonization in the saliva of periodontitis patients than in healthy
persons. Even after effective nonsurgical periodontal therapy, individuals with periodontitis
displayed a more dysbiotic and pathogenic microbial community in their saliva than
healthy individuals. Therefore, the gradual transition in the entire salivary microbial
community from healthy to diseased includes a gradual shift to dysbiosis. Free salivary
pathogens might play an important role in the recolonization of bacteria as well as the
prognosis and recurrence of periodontal diseases.

Keywords: salivary microbiome, gingivitis, generalized periodontitis (stage I/II), non-surgical therapy, dysbiosis,
full-length 16S rRNA gene sequencing
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INTRODUCTION

Periodontal diseases refer to various pathologies that occur in
periodontal tissues, among which gingivitis and generalized
periodontitis are the most common forms (Caton et al., 2018;
Chapple et al., 2018). Gingivitis is an early inflammatory
condition of the gums. If left untreated, it results in progressive
destruction of the periodontal supporting tissues and clinically
detectable attachment loss, establishing periodontitis (Newman
et al., 2015). Periodontitis is one of the leading causes of tooth
loss, endangering patients’ general and mental health and
imposing high economic costs (Petersen and Ogawa, 2012). It
has also been proven to be associated with various systemic
diseases, such as diabetes (Preshaw et al., 2012) and Alzheimer’s
disease (Dioguardi et al., 2020). If periodontitis is not well
controlled, periodontal inflammation negatively affects
glycemic control (Mauri-Obradors et al., 2018). According to
the results of the 4th National Oral Health Epidemiological
Survey of China, the percentage of subjects with healthy
periodontal conditions was less than 10% among 35- to 45-
year-old Chinese adults (Sun et al., 2018). The situation worsens
with aging. The global age-standardized prevalence of severe
periodontitis is static at 10-15% (Kassebaum et al., 2014). With
an increasing life expectancy, periodontitis has predictably
caused a growing burden worldwide. The severe impact and
universality of periodontal disease necessitate investigation of
early diagnosis and risk assessment.

The subgingival microbiota is considered to be the initiator of
periodontal disease (Socransky et al., 1998). Simultaneously, the
technique of using subgingival plaque or gingival crevicular fluid
as a sample to evaluate periodontal status is complex and not
convenient for extensive community-wide periodontal disease
screening. Therefore, the use of saliva as a diagnostic tool for oral
or systemic diseases has attracted attention because it is simple,
fast, and noninvasive to collect whole saliva (Yoshizawa et al.,
2013; Nunes et al., 2015). A previous study demonstrated the
possibility of using at-home self-collected saliva samples as an
adequate alternative for SARS-CoV-2 detection (Braz-Silva et al.,
2020). Certain bacteria in saliva might have the potential to
represent biomarkers of some systemic diseases, such as
gestational diabetes mellitus (Li et al., 2021).

Saliva is an important mediator in the oral cavity. Studies
have found a correlation between subgingival and salivary levels
of specific bacteria present in periodontal tissues in patients with
periodontitis (He et al., 2012; Haririan et al., 2014; Belstrøm
et al., 2017). Meanwhile, it was reported that bacteria from the
untreated diseased sites of individuals with periodontitis
recolonized in the treated areas via saliva (Chen et al., 2018).
These results imply that bacteria can freely disseminate to any
oral site via saliva. Therefore, free periodontal disease-associated
taxa in saliva might play an important role in the development
and prognosis of periodontal diseases.

To date, many studies have focused on the salivary
periodontal disease-associated microbiota in healthy and
diseased individuals (Salminen et al., 2014; Salminen et al.,
2015; Belstrøm et al., 2016; Damgaard et al., 2019; Lundmark
et al., 2019) as well as the changes that occur before and after
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nonsurgical periodontal therapy (Komaki et al., 2017; Belstrøm
et al., 2018; Chen et al., 2018). Most of these studies used
quantitative real-time polymerase chain reaction (qPCR) or
partial variable regions of the 16S rRNA gene for sequencing,
making it impossible to obtain accurate information at the
species level (Singer et al., 2016). Some bacteria of the same
genus were associated with both disease and health, suggesting
different pathogenic potentials of species within the same genus
(Chen et al., 2018). Thus, it is of great significance to deeply
sequence these organisms at the species level. In addition, the
selection of the 16S rRNA gene sequence regions might bias the
results (Cruaud et al., 2014; Tremblay et al., 2015). Based on
third-generation PacBio sequencing technology, studies have
shown that full-length bacterial 16S rRNA gene sequencing can
provide accurate information at the species level and detailed
identification of complex microbial communities with high
throughput (Singer et al., 2016; Wagner et al., 2016; Johnson
et al., 2019).

Therefore, we examined the salivary microbiota in
periodontally healthy individuals (n=15) and in individuals
with gingivitis (n=15) or generalized periodontitis (stage I/II)
(n=15) before and after nonsurgical periodontal therapy using
full-length bacterial 16S rRNA gene sequencing. We aimed to
reveal the potential roles of the free salivary microbiota in
different periodontal statuses and their reaction to treatment to
determine the onset, development, and prognosis of salivary
microbiome dysbiosis in persons with periodontal diseases.
These results may offer a foundation for developing effective
treatment strategies and helping in the assessment of prognosis.
MATERIALS AND METHODS

Ethics Approval and Informed Consent
This study was ethically approved by the Peking University
Biomedical Ethics Committee (issuing number: IRB00001052-
16072). All participants signed the informed consent
before enrollment.

Subjects and Design
A total of 90 unstimulated whole saliva samples were obtained
from 15 periodontally healthy adults (H), 15 adults diagnosed
with gingivitis (G), and 15 adults with generalized periodontitis
(stage I/II) (P), all of whom were recruited from the Peking
University School of Stomatology from March to September
2017. The flowchart of this study is shown in Figure 1. At
baseline (T0), participants were enrolled and classified after
reviewing their medical and dental history and oral clinical
examinations. Clinical examinations of all participants were
performed by one specialized dentist.

The inclusion criteria of the present study were as follows:
(1) older than 20 years, (2) at least 20 naturally remaining teeth
(excluding third molars), and (3) systemically healthy. The
exclusion criteria were: (1) received periodontal treatment in the
last 12 months, (2) used antibiotics or immunosuppressant
medication within 3 months, (3) were pregnant or lactating,
September 2021 | Volume 11 | Article 711282
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(4) were current or former smokers, (5) were diagnosed with
systemic disease or disease/infection that may affect periodontal
health status (e.g., diabetes), (6) wearing orthodontic appliances,
(7) oral mucosal inflammation, or (8) severe untreated dental caries.

All participants were intergroup matched by sex and age as
much as possible before the study commenced. All participants were
sampled at baseline, and then groups G and P received ultrasonic
supragingival scaling treatment. One week later (T1), groups G and
P were sampled again, and then group P received subgingival
scaling and root planning therapy using hand instruments
(Gracey curettes 5/6, 7/8, 11/12, 13/14). Eight weeks after the
completion of subgingival scaling and root planning treatment
(T2), only group P was sampled for reevaluation. All participants
received a full-mouth dental examination each time after sampling.
During the intervals between sampling, there was no antibiotic
medication or use of other drugs possibly affecting the microbiota
composition, while no clinically significant condition emerged in
this period as well. All periodontal treatments were performed by
residents of the Department of Preventive Dentistry, Peking
University Hospital of Stomatology. The quality of treatment and
accuracy of clinical measurement were inspected by a clinical
instructor. The specific clinical periodontal parameters are
supplied in Appendix Tables 1, 2.

Clinical Examination and Classification
Clinical examinations of all participants were performed by one
specialized dentist using manual periodontal probes (PCPUNC 15;
HuFriedy Mfg. Co., Inc., Chicago, IL, USA). The full mouth plaque
scores of subjects were recorded. The clinical periodontal indices,
including probing depth (PD), bleeding on probing (BOP), and
bleeding index (BI), were measured at six sites per tooth (mesio-
buccal, mid-buccal, disto-buccal, mesio-lingual, mid-lingual, and
disto-lingual). PD was measured to the nearest scale.

Participants were classified into the group of generalized
periodontitis (Stage I/II) (the P group), gingivitis (the G group),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
and periodontally healthy control (the H group) based on their
periodontal status in accordance with the clinical criteria stated in
the consensus report of the World Workshop in Periodontitis
(Caton et al., 2018; Chapple et al., 2018). The generalized
periodontitis (Stage I/II) group (n=15) included individuals
with at least 30% of teeth with CAL ≥ 1 mm and PD ≥ 4 mm.
The G group (n=15) exhibited no CAL, no site with PD > 3 mm,
BOP > 20%, and no radiographic alveolar bone loss. The H group
(n=15) exhibited no sites with attachment loss, no sites with PD >
3 mm, BOP ≤ 20%, and no radiographic alveolar bone loss.

Saliva Sampling and Total Genomic
DNA Extraction
All participants were asked not to eat or use oral hygiene methods
for at least two hours until sampling. Before collection, each
participant was asked to rinse their oral cavity with water and
then rest for 10 min. Two milliliters of unstimulated whole saliva
were collected at 8:00 – 9:00 a.m. and then transferred to the
laboratory on ice as soon as possible and centrifuged at 10,000 × g
for 10 min at 4°C. The supernatant was removed, and the
precipitate was stored at -80°C before DNA extraction.

Microbial DNA extraction was performed using the QIAamp
DNA Mini Kit (Qiagen, Hilden, Germany), following the
manufacturer’s instructions. Concentration and purity testing
of the DNA was performed using a NanoDrop 8000
spectrophotometer (NanoDrop Technologies, Wilmington, DE,
USA). The integrity of bacterial genomic DNA was checked by
1.20% agarose gel electrophoresis, and a negative control with
only buffer was used. DNA samples were stored at -80°C until
further use.

PCR Amplification, Sequencing, and
Quality Filtering
PCR amplification of the nearly full-length bacterial 16S rRNA
genes was performed using the forward primer 27F (5’-AGAG
FIGURE 1 | The flow chart of this study showing the enrollment and classification of participants to subsequent microbiota analyses.
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TTTGATCMTGGCTCAG-3’) and the reverse primer 1492R (5’-
ACCTTGTTACGACTT-3’). PCR amplification was performed
under the following cycling conditions: initial denaturation
98°C 2 min, denaturation 98°C 15 s, annealing 55°C 30 s,
extension 72°C 30 s, final extension 72°C 5 min, and 10°C
hold for 25-30 cycles. Full-length 16S rRNA gene sequencing
was conducted using the PacBio Sequel platform (Shanghai
Personal Biotechnology Co., Ltd, Shanghai, China). Sequences
were quality filtered via Vsearch (v2.13.4_linux_x86_64) using
the fastq_filter command and selecting the fastq_maxee
parameter to discard sequences with more than the specified
number of expected errors (Rognes et al., 2016).

Data Processing and Statistical Analysis
Analysis of sequencing data was primarily performed using the
QIIME2 platform and R package (3.5.0). The data were further
analyzed as follows: (1) differences in age and sex were compared
using t-tests and c2 tests; (2) rarefaction curves, taxonomic
composition maps at the species level, and Venn diagrams
were constructed; (3) the Chao1 index, Shannon index, and
Simpson index were calculated among the baseline groups; (4)
principal coordinates analysis (PCoA) based on Bray-Curtis
distance was used to examine community differences at baseline;
(5) interindividual variation based on weighted UniFrac distance
was compared by Kruskal–Wallis test via GraphPad Prism 8
(GraphPad, San Diego, California, USA); (6) relative abundance
differences in bacterial taxa between groups H and P0 were
compared by Welch’s t-test using STAMP (v2.1.3) (Parks et al.,
2014). (7) receiver operating characteristic (ROC) analysis and
analysis of clinical parameters were conducted using SPSS version
23.0 (IBM, Armonk, NY, USA); (8) the random forest algorithm
was constructed to rank the importance of all operational
taxonomic units (OTUs) and show their abundance; (9)
MetagenomeSeq analyses were used to identify OTUs with
statistically significant differences between groups; and (10)
functional prediction of microbiota was conducted on PICRUSt 2
(Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States). Thepathway abundanceswere predicted based
onKEGGorthologs.P<0.05was considered statistically significant,
and all P-values were two-sided.

Data Availability
The raw sequencing data of this study are available in the NCBI
Sequence Read Archive under accession number PRJNA725813.
RESULTS

Characteristics of Study Subjects
The P group included 15 patients with generalized periodontitis
(stage I/II) (mean age 39.80 ± 11.08 years, male =6, female=9).
The G group included 15 patients with gingivitis (mean age 33.67 ±
11.20 years, male =5, female=10), and the H group included 15
periodontally healthy individuals as controls (mean age 33.80 ±
11.30 years, male =5, female=10). There were no significant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
differences in the mean age (P vs. H: P = 0.153; G vs. H: P =
0.974) or sex distribution (P = 0.908) among the selected groups.

The Composition and Diversity of
Salivary Microbiota
A total of 1,214,934 sequences were generated after quality
filtering, with an average of 13,499 (range from 7,449 to
17,582) sequences per sample. Most of the sequences were
1420-1490 bp in length. The species richness of the salivary
microbiota of each sample was estimated by rarefaction analysis
(Appendix Figure 1). The overall structure of the salivary
microbiota by species in different groups of saliva samples is
shown in Appendix Figure 2. The legend shows the top 50 taxa
in terms of mean relative abundance. The number of shared and
unique OTUs in each group is shown in Appendix Figure 3.

The a-diversity indices of the baseline groups, including the
Chao 1 index, Shannon index, and Simpson index, are displayed
in Figure 2A. We found that the Chao1 index in the H group was
the lowest, and it was the highest in the G0 group, which was
similar in the Shannon index. The Simpson index in the P0
group was the lowest, and it was the highest in the G0 group.
However, there were no significant differences among any of
these comparisons.

b-Diversity, shown by principal coordinates analysis (PCoA)
of Bray-Curtis distance, was analyzed to determine the salivary
microbial community structure at baseline (Figure 2B). The
closer the distance between samples shown in the diagram, the
more similar the microbial community structure was. The results
showed that the salivary microbial community structure was
similar among the three groups. At the same time, the intragroup
dispersion was more significant in the P0 group than in the other
two groups.

Then, we extracted the corresponding interindividual
weighted UniFrac distances of the three baseline groups
(Figure 2C). The interindividual distances in group H were
significantly lower than those in groups G0 and P0 (P=0.002,
P<0.001, respectively) by the Kruskal-Wallis test.
Marker Species Analysis Between
Groups H and P0
Taxa with a median relative abundance below 0.1% were
excluded. Then, the differential species between groups H and
P0 were further investigated to identify specific microbial
biomarkers that can be used to discriminate periodontitis. At
the species level, a group of five species, Prevotella intermedia,
Catonella morbi, Porphyromonas pasteri, Prevotella nanceiensis,
and Haemophilus parainfluenzae, showed statistically significant
differences in abundance between the H and P0 groups using
Welch’s t-test (P<0.001, P=0.010, P=0.019, P=0.020, and
P=0.021, respectively) (Figure 3A). P<0.05 was regarded as the
threshold for statistical significance (two-sided).

Next, we conducted receiver operating characteristic (ROC)
analysis to distinguish the H and P0 groups using the five species
detected by comparing the relative abundance of predominant
bacteria to construct classification models. Using Prevotella
September 2021 | Volume 11 | Article 711282
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intermedia, Catonella morbi, Porphyromonas pasteri, Prevotella
nanceiensis, and Haemophilus parainfluenzae as bacterial
features, the model achieved optimal area under the curve
(AUC) values of 0.8711, 0.8267, 0.7556, 0.8089, and 0.8,
respectively (Figure 3B). When using the combination of the
five species, the AUC value was as high as 0.9733 (Figure 3C).

Group Classification Based on the
Random Forest (RF) Algorithm
A classifier based on the random forest algorithm was
constructed to rank the importance of all OTUs. The top 30
OTUs and their abundance information are shown in Figure 4.
There were no significant differences in the abundance of OTUs
between groups G and H. Box 1 and Box 2 were characterized by
high levels of periodontal disease-associated taxa, such as
Porphyromonas gingivalis, Streptococcus gordonii, Prevotella
nigrescens, Porphyromonas endodontalis, Filifactor alocis, and
Tannerella forsythia, corresponding to groups P0 and P1,
respectively (Socransky et al., 1998; Holt and Ebersole, 2005;
Bedran et al., 2012; Aruni et al., 2014; Zhang et al., 2017;
Edmisson et al., 2018). Interestingly, a higher abundance of
disease-associated taxa was observed in group P1 (Box 2) than
in group P0 (Box 1). This was similar in Box 5. Box 3 and Box 4
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
were characterized by periodontal health-associated taxa and
other bacteria considered to have low pathogenicity, such as
Prevotella nanceiensis, Lautropia mirabilis, and Prevotella
melaninogenica (Colombo et al., 2012; Teles et al., 2012;
Aguilar-Durán et al., 2019; Ikeda et al., 2019; Beydoun et al.,
2020; Papapanou et al., 2020). The abundance of health-related
taxa was the highest in group H and the lowest in group P, and it
was relatively high in group P2 among the three P groups.

Differences at the OTU Level Before and
After Treatment
To determine differences in OTU levels before and after nonsurgical
periodontal treatment, we conducted MetagenomeSeq analyses.
There were no significantly different OTUs between groups P0 and
P1, while the abundance of OTU_8637, which was annotated as
unclassified_Streptococcus, was significantly increased in group P2
compared to P0 (Figure 5A). The quantities of OTU_114 and
OTU_8431, annotated as Tannerella forsythia and unclassified_
Granulicatella, respectively, were decreased in group P2 compared
to P1 (Figure 5B).

Compared to group H, many different OTUs were increased
in the P1 and P2 groups, most of which were periodontal disease-
associated taxa. Interestingly, there were more types of
A B

C

FIGURE 2 | Comparisons of alpha diversity and beta diversity among the three baseline groups, H, G0, and P0. (A) Microbial richness presented by Chao1 and
microbial diversity presented by Shannon and Simpson indices. (B) PCoA based on Bray-Curtis distance exhibiting the variation of community structure in the three
groups. (C) Intragroup dispersion presented by the corresponding interindividual weighted UniFrac distances for each group. **P < 0.01, ***P < 0.001 by Kruskal-
Wallis test. Each color represents one group: green for H, yellow for G0, and red for P0.
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significantly different taxa between groups P1 and H, including
Prevotella intermedia, Filifactor alocis, Tannerella forsythia,
Prevotella melaninogenica, Prevotella nigrescens, Prevotella
veroralis, Campylobacter rectus, Streptococcus gordonii,
Lachnospiraceae [G-8] bacterium_HMT_500, Treponema
sp._HMT_951, and unclassified_Neisseria (Figure 5C). After
completing nonsurgical periodontal treatment, there were still
enriched taxa, including Prevotella intermedia, Lachnospiraceae_
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
[G-8] bacterium_HMT_500, and Prevotella veroralis, in group P2
versus group H (Figure 5D).

Bacterial Functional Analysis
and Comparison
Predictive function by PICRUSt2 based on the KEGG database
showed that there were no statistically significant differences
among any of the groups (Appendix Figure 4).
FIGURE 4 | Random forest classification model for different periodontal statuses based on free salivary bacteria. The top 30 OTUs with the highest importance for
classification are ranked on the left (see Appendix Table 3 for the complete list of taxa), and the score of importance is shown on the right. Different colors on the
top identify the six sample groups. The heat map shows the abundance distribution of these taxa in each sample. Boxes 1, 2, and 5 were characterized by high
levels of disease-associated taxa. Boxes 3 and 4 were characterized by health-associated taxa and other bacteria considered to have low pathogenicity.
A

B C

FIGURE 3 | Differential species and ROC analysis. (A) Comparison of the relative abundance of bacteria by species between the H and P0 groups at baseline.
P < 0.05 by Welch’s t-test. (B) Receiver operating characteristic (ROC) analysis of distinguishing group H from group P0 using detected species assessed by the
area under the curve (AUC). (C) ROC curve for the logistic regression model of combined diagnosis by the five detected species.
September 2021 | Volume 11 | Article 711282
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DISCUSSION

Gingivitis and generalized periodontitis are chronic infectious
diseases derived from the dysbiosis of the subgingival
microbiome (Hajishengallis and Lamont, 2012). Host
inflammatory reactions play a vital role in their onset and
development (Bartold and Dyke, 2013; Lamont et al., 2018).
When the subgingival local bacterial community changes, the
entire oral ecology is affected, and the free pathogens in saliva
may reflect the degree of dysbiosis in the oral niche (Haririan
et al., 2014; Belstrøm et al., 2016; Belstrøm et al., 2018; Chen
et al., 2018; Damgaard et al., 2019; Lundmark et al., 2019).
Therefore, saliva shows its importance here and offers a simple,
noninvasive alternative to assist in the early diagnosis and risk
assessment of periodontal diseases. This study demonstrated the
free bacterial composition and potential roles in saliva in
different periodontal statuses and their reaction to treatment
using third-generation PacBio full-length 16S rRNA gene
sequencing. Therefore, we gained more detailed and
comprehensive information about microbial composition at
the species level (Singer et al., 2016).

The cross-sectional comparison of a-diversity indices
exhibited no statistically significant differences in baseline
groups (Figure 2A). The PCoA based on Bray-Curtis distances
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Figure 2B) indicates that the closer the distance between
samples shown in the diagram, the more similar the microbial
community structure was. Both results demonstrated that the
salivary microbial community structure was similar among the
three baseline groups. This is consistent with previous studies
showing that the salivary microbiome primarily consists of
bacteria shed from the surface of the mouth, especially from
the tongue and throat (Segata et al., 2012; Krishnan et al., 2016).
As the severity of disease increased, the interindividual distances
based on weighted UniFrac distances became increasingly farther
from healthy to gingivitis and periodontitis (Figure 2C). This
might indicate that periodontal diseases are not driven by the
same specific bacteria in different cases. There were varied
compositions of pathogens in different individuals owing to
their diverse susceptibility to bacteria. Then, the increase in the
degree of dysbiosis led to a diseased status. The microbial
community structure became increasingly dissimilar in
individuals with periodontal diseases.

In the comparison between groups H and P0, we identified
five bacterial species that showed a statistically significant
difference in abundance (Figure 3A). According to their
relative abundance, we assumed that a higher abundance of
Prevotella intermedia and Catonella morbi and a lower
abundance of Porphyromonas pasteri, Prevotella nanceiensis,
A B

DC

FIGURE 5 | MetagenomeSeq analyses of significantly different taxa (occurrence frequency of OTUs in the upregulated group was greater than 0.3) between different
groups. The differential taxa are annotated at the genus level at the bottom and at the species level at the top. (A) Upregulated OTUs in group P2 compared to P0.
(B) Downregulated OTUs in group P2 compared to P1. (C) Upregulated OTUs in group P1 compared to H. (D) Upregulated OTUs in group P2 compared to H.
September 2021 | Volume 11 | Article 711282
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and Haemophilus parainfluenzae might be characteristics of
generalized periodontitis (stage I/II) compared to healthy
conditions. A combination of these five bacteria at the species
level might serve as a biomarker of generalized periodontitis
(stage I/II) and help with rapid diagnosis, with an AUC reaching
0.9733 (Figure 3C). However, before application on a larger
scale, this classifier requires validation in a larger population of
different regions and races.

The results of the random forest algorithm (Figure 4) and the
MetagenomeSeq analyses (Figure 5) offered us some information
about the bacterial composition at the OTU level. Changes in free
bacteria in the saliva after nonsurgical periodontal therapy were
not as apparent as in subgingival plaques or gingival crevicular
fluids in previous studies (Komaki et al., 2017; Belstrøm et al.,
2018). There was no difference in OTUs between healthy
individuals and persons with gingivitis at either T0 or T1.
However, for patients with generalized periodontitis (stage I/II),
the general tendencies were consistent with previous studies
(Komaki et al., 2017; Belstrøm et al., 2018), including the
increased abundance of health-associated taxa such as the
Streptococcus genus and the decreased quantity of disease-
associated taxa such as Tannerella forsythia.

Some of the different taxa between groups H and P1 were also
found in other studies. One study found that Campylobacter
rectus and Prevotella nigrescens in supragingival plaque and
Prevotella nigrescens in subgingival plaque displayed increased
proportions 4-7 days after professional cleaning (Teles et al.,
2012). This result indicates that these taxa might be related to the
recolonization of periodontal pathogens and the reestablishment
of plaque biofilms. In addition, Streptococcus gordonii
synergistically acts with Porphyromonas gingivalis to initiate
biofilms on the tooth and provide binding sites for subsequent
colonizing bacteria to attach and generate mature biofilms (Daep
et al., 2011; Wright et al., 2013; Lamont and Hajishengallis, 2015;
Kuboniwa et al., 2017). These results indicate that the enriched
pathogens in the saliva of group P1 might be related to the
reestablishment of plaque biofilms. Periodontitis patients who
had undergone ultrasonic supragingival scaling a week prior and
left their subgingival plaque unremoved experienced
recolonization of periodontal pathogens.

Eight weeks after the end of nonsurgical periodontal
treatment, periodontitis subjects’ clinical parameters improved
significantly (Appendix Table 1). However, there were still
enriched taxa in group P2 versus group H, including Prevotella
intermedia, Lachnospiraceae_[G-8] bacterium_HMT_500, and
Prevotella veroralis. Prevotella intermedia is a member of the
“orange complex” (Socransky et al., 1998). The “orange
complex” consisted of a tightly related core group including
members of the Fusohaderium nucleatum/periodoniicum
subspecies, Prevotella intermedia, Prevotella nigrescens, and
Peptostreptucoccus micros. Species associated with this group
included: Eubacterium nodatum, Campylobacter rectus,
Campylobacter showae, Streptococcus consteltatus, and
Campylobacter graellis. The species in this group were closely
associated with one another, and this complex appeared closely
related to the “red complex” and periodontal pocket depth
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
(Socransky et al., 1998). Prevotella veroralis is usually found in
adult patients with periodontitis (Rawlinson et al., 1993).
According to these results, we found that it was impossible to
change the free salivary bacteria in individuals with periodontitis
into a totally healthy status if they simply underwent complete
nonsurgical periodontal treatment one time. A previous study
suggested similar results. The authors found that persons with
well-maintained periodontitis exhibited a more dysbiotic
subgingival microbial community than healthy persons
(Lu et al., 2020). These results could help explain why chronic
periodontitis is a rather stubborn disease which is easy to recur.
Higher levels of pathogenic bacteria in the saliva might be one of
the reasons for its recurrence.

In the functional analysis, we found no statistically significant
difference among any of the groups (Appendix Figure 4). This
might indicate that saliva is not a suitable medium for
investigating functional changes in periodontal pathogenic
bacteria. A limitation of the present study is that we did not
sample subgingival plaques, which might be a better medium for
metabolic analysis. We were also unable to investigate the
relationship between subgingival plaque and free salivary
bacteria. In addition, the periodontitis patients we included
presented relatively mild clinical parameters. This might be a
vital factor affecting functional analysis and other aspects of our
research. Another limitation of our study is the limited sample
size. The potential roles of the free salivary microbiome in
periodontal diseases should be confirmed in a larger
population with various periodontitis levels from mild to severe.

From a healthy state to periodontitis, there was a gradual shift
to dysbiosis, along with gingivitis (Figure 6A). This gradual
transition in the entire microbial community from health to
disease may be affected by several factors (Figure 6B). Under
healthy conditions, the composition and metabolism of the
microbial community may fluctuate within a small range,
indicating a dynamic balance. Once the local microenvironment
changes, the abundance of bacteria and the specific microbial
composition of plaques may vary significantly (Appendix
Figures 2, 3). In addition, the metabolism of plaques may also
be influenced, resulting in more pathogenic products. All of these
transitions may accelerate the increase in the degree of dysbiosis,
and the clinical status would eventually change from healthy to
diseased. Once the individuals experience periodontitis, the free
salivary bacterial community remains more dysbiotic and
pathogenic than that in healthy individuals, even though they
were administered nonsurgical periodontal treatment
(Figure 6A). Most of the current therapeutic interventions aim
to remove local plaque and its products to improve the local
microenvironment to a healthy state. Few treatment strategies
have taken pathogenic bacteria in the saliva into account. A
longitudinal design is needed to explore the specific role of free
salivary bacteria in the relapse in patients with periodontitis after
nonsurgical periodontal treatment.

The results of our study help us better understand the
ecological plaque hypothesis and provide inspiration for
treatment strategies. First, the gradual transition in the entire
salivary microbial community from healthy to diseased involved
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a gradual shift to dysbiosis. Timely and effective intervention in
gingivitis is necessary to prevent the further development of
dysbiosis. Second, free salivary pathogens might play an
important role in the recolonization of bacteria and the
prognosis and recurrence of periodontal diseases. Periodic
periodontal maintenance seems essential to reduce the
abundance of free pathogens in the saliva.
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