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Head and neck tumors are the sixth most common neoplasms. Multiomics integrates
multiple dimensions of clinical, pathologic, radiological, and biological data and has
the potential for tumor diagnosis and analysis. Deep learning (DL), a type of artificial
intelligence (AI), is applied in medical image analysis. Among the DL techniques, the
convolution neural network (CNN) is used for image segmentation, detection, and
classification and in computer-aided diagnosis. Here, we reviewed multiomics image
analysis of head and neck tumors using CNN and other DL neural networks. We also
evaluated its application in early tumor detection, classification, prognosis/metastasis
prediction, and the signing out of the reports. Finally, we highlighted the challenges and
potential of these techniques.
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INTRODUCTION

Head and neck tumors are the sixth most common neoplasms (529,000 new cases annually) and
cause 350,000 cancer-related deaths each year (Ferlay et al., 2015; Fidler et al., 2017). Accurate
diagnosis and analysis, especially histologic, radiologic, and biological findings, are crucial for
therapeutic efficacy and prognosis prediction in precision medicine. A histologic section typically
contains 106–107 cells and provides information on cell numbers and the tumor microenvironment
(Koelzer et al., 2017). Radiological images contain 50–5,000 quantitative features (Limkin et al.,
2017). Therefore, pathologists and radiologists must spend considerable time and effort on the
qualitative and quantitative analyses of cell subsets and biomarker expression in a series of
images. Also, inter- and intraobserver variations caused by subjective evaluation are inevitable in
clinical practice.

Artificial intelligence (AI) was developed in the 1950s (Bini, 2018). The term big data was
first proposed by the National Aeronautics and Space Administration in 1997 because a dataset
is too large to be easily manipulated and managed. Big data refers to extra huge amounts of
data integration, storage, analysis, and reuse of various forms of data, such as audio, video, and
images. Big data is aimed at generating a large amount of information to assist decision-making and
estimate outcomes, at a lower cost in time and labor (Conway et al., 2018). Computer algorithms
and well-integrated data are critical for decoding medical big data. Because radiologic images are
digitalized, no additional processing is required. Hung et al. (2020) used clinical big data from the
SEER database to predict the survival time of patients of oral tumor by machine learning algorithms
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in 2020. For pathologic diagnosis, the first major step in adopting
deep learning (DL) is to use digital whole-slide imaging (WSI)
in routine practice (Jeyaraj and Samuel Nadar, 2019). WSI
is non-inferior to traditional microscopy for clinical diagnosis
(Halicek et al., 2019).

Machine learning (ML), a type of AI, refers to a computer
software performing a task by being exposed to the manually
crafted features of representative data (Niel and Bastard,
2019). Head and neck tumors are diverse in histology, in
the pattern of underlying genetic alterations, and in metabolic
signatures, which need a new method to reveal the sophisticated
features. An evolution of ML—DL (Helm et al., 2020)—
was first applied to the analysis of pathologic images of
the head and neck in 2017 (Lu et al., 2017). Several new
theories and methods have arisen to facilitate the application
of DL in precision medicine, such as backpropagation and
multiple layers in the convolution network. The main beauty
of DL is to get rid of the handcrafted features and the
end-to-end learning procedure. In the same year, DL was
applied to radiomics image segmentation of head and neck
tumors (Ibragimov and Xing, 2017). As a result of the
improvements of computer algorithms and computational
pathology, DL now facilitates the identification of benign
and malignant tumors, grading of malignant tumors, and
prognosis prediction.

Here, we outlined the application of DL algorithms in
multiomics to diagnose and analyze head and neck tumors.
Because pathological diagnosis of tumors is the gold standard,
the application of DL in pathomics is emphasized in the
diagnosis section and radiomics in the prognosis section. Finally,
we review the challenges and prospects of DL in multiomics
diagnosis and analysis.

APPLICATION OF DL IN TUMOR
DIAGNOSIS AND MULTIOMICS
ANALYSIS

The term “multiomics” in medicine refers to the combination
of multiple sources of information (genomics, transcriptomics,
proteomics, metabolomics, radiomics, and pathomics) to provide
a deeper understanding of the tumor pathogenesis and lesion
nature (Mars et al., 2020; Ye Y. et al., 2020; Figure 1). A schematic
representation of a synergetic integration of multiomics data is
shown in Figure 1. DL techniques have already been applied
for multiomics analysis in various tumors. The identification
of tumor origin and essential gene is critical for molecular
targeted therapies and accurate treatment and lays the foundation
to reveal changes in oncogenic mutation by liquid biopsy.
Actually, multiomics is heterogeneous data which is difficult to be
comprehensively analyzed. However, the DL network takes this
challenge into an opportunity. DL-based multiomics analysis has
allowed to classify groups of patients based on a more individual
scale in the era of precision medicine. A timeline demonstrating
the researches of DL in tumor diagnosis and multiomics
analysis is shown in Supplementary Figure 1. Identifying robust
survival subgroups of head and neck squamous cell carcinoma

(HNSCC) will significantly improve patient outcome. Zhao
et al. (2020) established a DL-based disease progression model
on 86 HNSCC patients’ data using methylation data, RNA
sequencing (RNA-Seq), and miRNA sequencing (miRNA-Seq)
from The Cancer Genome Atlas (TCGA). The results of the
autoencoder DL model demonstrated that patients were classified
into two subgroups with a significant difference in progression-
free survival (PFS). The predictability of this model was validated
using three independent cohorts. The different biological origin
of the tumor tissue has distinct clinical behavior. In practical
clinical situations, it is difficult to distinguish between poorly
differentiated carcinoma and metastatic carcinomas. Jiao et al.
(2020) constructed a multiclass deep learning/neural network
(DNN) model to integrate the whole genome sequence and
pathomics data to shed light on a comprehensive view of the
histological origin of the tumor cells. They evaluated three
features, namely mutation distribution, mutation type, and driver
gene/pathway. The classifier achieved predictive accuracies of
91% in 24 types of tumors.

Artificial neural network models have been used to investigate
the relationship between the symptoms of oral cancer and
its prognosis (Tseng et al., 2015). Phillips et al. (2019) used
DL models to detect pigmented dermoscopic images, thus
improving the accuracy of early melanoma diagnosis. Clinically,
it is difficult to differentiate ameloblastomas from keratocystic
odontogenic tumors depending only on X-ray. CNN can assist
in the diagnosis of ameloblastoma and keratocystic odontogenic
tumors based on transfer learning. The sensitivity, specificity, and
accuracy were 81.8, 83.3, and 83.0%, respectively. Interestingly,
the model performed consistently well, just like skilled experts
(Poedjiastoeti and Suebnukarn, 2018). In addition to X-ray
research, Fu et al. (2020) used clinical photographic images
to predict the early occurrence of oral tumor through a
cascaded CNN model. After training by 1,469 samples, the
sensitivity and specificity reached 94.9 and 88.7%, separately.
This study also provided a non-invasive and highly efficient
perspective on oral tumor detection. It was also possible to
start providing early treatment immediately. In IDH1 wild-type
glioblastomas, methylation modification had a great influence on
chemotherapy response and prognosis. Le et al. (2020) used a
radiomics-based eXtreme Gradient Boosting (XGBoost) model
to predict the IDH1 wild-type patients with O6-methylguanine-
DNA methyltransferase (MGMT) promoter methylation status.
Nine robust radiomics features were selected based on the
F score to improve the diagnosis of MGMT methylation
status in IDH1 wild-type glioblastomas and predict patient
prognosis. Sulfation of the protein S site is an important
posttranscriptional modification, which plays a vital role in
signal transduction, transcriptional regulation, and cell apoptosis.
However, traditional experiments for its biological functions were
not timely due to its rapid degradation. Do et al. (2020) used a
DL network to predict protein phosphorylation S site based on
the proteomics data. The DL network was also used to predict
the function of fertility-related proteins in infertility patients and
paved the way for a better understanding of the function of
fertility proteins (Le, 2019). Therefore, the integration of DL,
image analysis, and big data enables the evaluation of tumor
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FIGURE 1 | Schematic representation of a synergetic integration of multiomics data. (a) Biopsy specimens from head and neck tumor tissue. (b) Pathological data.
(c) Tumor protein data. (d) Chromosomal data. (e) Gene microarray data. (f) Tissue microarray data. (g) Gene mutation data. (h) mRNA expression data.
(i) Methylation data.
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biological behavior and, hence, facilitates diagnosis, personalized
treatment, and survival prediction.

HEAD AND NECK TUMOR MULTIOMICS
ANALYSIS

Multiomics Analysis in Early Detection of
Tumors
The global incidence of head and neck cancer is 1.3 million
annually. The risk factors for head and neck tumors are
chewing tobacco, local irritation, smoking, alcohol abuse, human
papillomavirus infection, etc. It is necessary to monitor the
occurrence of oral cancer in high-risk groups. Early diagnosis
could reduce the mortality rate to 70% at present (Erickson
et al., 2018). Also, DL could enable regular follow-up of high-
risk groups. Moreover, DL methods can be applied not only to
low-level tasks (e.g., recognition, detection, and segmentation)
but also to more advanced tasks (e.g., selection of the optimal
treatment and prediction of prognosis).

As we know, routine tissue biopsies are invasive. Although
it is safe, some risks may be brought in rare cases and non-
invasive biopsy comes into being. In non-invasive modalities,
a large number of images appeared combined with training
of DL networks based on oral clinical examinations and
histological findings, which would assist in the evaluation of
precancerous and cancerous lesions. The human eyes and
cameras capture three color channels—red, green, and blue.
Hyperspectral imaging involves multiple wavelengths, enabling
the identification of cancerous and normal tissue by optical
biopsy. Halicek et al. (2017) trained a CNN to identify
hyperspectral images of squamous cell carcinoma (SCC). The
reported accuracy, sensitivity, and specificity of the training set
were 81, 81, and 80%, respectively. The hypercube contained 91
spectral bands, ranging from 450 to 900 nm with a 5-nm spectral
sampling interval. Similarly, confocal laser endomicroscopy
(CLE) allows real-time visualization of epithelium in vivo and
enables early diagnosis of oral cancer and prediction of the
prognosis. In 2007, Soo et al. reported the application of CLE
for the diagnosis of oral SCC (OSCC) (Thong et al., 2007).
Subsequently, Nathan et al. applied CLE to detect head and
neck precancerous lesions; the sensitivity and specificity for
the diagnosis of oral epithelial dysplasia were 85.7 and 80.0%,
respectively (Moore et al., 2016). Aubreville et al. (2017) proposed
an automatic framework for the application of CLE to detect
cancerous lesions by CNN. In the proteomics research of head
and neck tumors, Ni et al. (2015) used artificial neural networks to
screen out proteins which were related to lymph node metastasis
using the proteins extracted from the saliva of OSCC patients.

Radiomics is also used as one of the non-invasive clinical
examinations. Ren et al. (2018) used the least absolute
shrinkage and selection operator (LASSO) logistic regression
to extract features from magnetic resonance images (MRI)
of head and neck SCC to predict the histological grade
before surgery. Subsequently, the same method was applied
in floor-of-the-mouth and tongue SCC by Ren et al. (2020).

Computed tomography (CT) can also be used to predict the
histological classification before surgery by kernel principal
component analysis (KPCA) and the random forest classifier
(Wu et al., 2019). Mukherjee et al. (2020) performed principal
component analysis and regularized regression to predict tumor
grade, extracapsular spread, perineural invasion, lymphovascular
invasion, and human papillomavirus infection status. The
accuracy, sensitivity, and specificity of the model were 0.72, 0.83,
and 0.48, respectively. DL is also applied in radiomics. Ye J. et al.
(2020) used a CNN model for histological classification of head
and neck tumors; the accuracy, sensitivity, and specificity were
0.79, 0.71, and 0.85, respectively. The utility of AI for the analysis
of head and neck pathologic sections and radiologic images is
summarized in Tables 1, 2.

Multiomics Analysis in Tumor Detection,
Segmentation, and Classification
Deep learning is suitable for digital pathology (DP)-related image
analysis tasks, such as detection (e.g., lymphocyte), segmentation
(e.g., nuclei and epithelium), and classification (e.g., the tumor
subclass). Figures 2, 3 demonstrate an example of epithelial
segmentations on WSI images and an example of segmentation
of nuclei in a cell layer on WSI images. Different from ML,
which classifies handcrafted features (Das et al., 2018), DL takes
an agnostic approach by combining feature extraction and the
interest region analysis.

In head and neck tumor diagnosis, the morphology of
heterogeneous cell types needs to be evaluated. This can be
formulated as a pixel-wise detection task. The detection tasks
frequently align with the classification tasks, and the algorithms
learn the weighted parameters of the feature map. The algorithms
map clusters of similar features to the output labels. The workflow
for DL approaches in digital pathology is shown in Figure 4. In
traditional ML, the workflow is comprised of two steps: detection
and classification. For instance, Lewis et al. (2014) developed
an approach to quantify automatically the morphologic features
used for the classification of aggressive or indolent p16-positive
oropharyngeal SCC. A cluster cell graph was generated to
evaluate the spatial distribution of mitotic cells, and a random
forest (RF) decision tree and SVM were used to classify features.
The accuracy of the model was 87.5% (140 patients). However,
it may not be applicable to other situations because of the
small training dataset and the overfitting problem. Moreover, the
accuracy of DL is unsatisfactory. Several proposed DL models for
detecting head and neck tumors overcome the abovementioned
shortcomings. Aubreville et al. (2017) trained a DL model to
detect an image patch from doubtful OSCC cases. Overall image
recognition had an area under the curve (AUC) of 0.96 and a
mean accuracy of 88.3% (sensitivity 86.6% and specificity 90%).

Halicek et al. trained a deep CNN to identify surgical margins
accurately in hyperspectral images. Additionally, an end-to-
end DL network can simultaneously detect and enumerate
mitotic cells (Jimenez and Racoceanu, 2019). In the above
reports, DL was only used for dimension reduction or feature
extraction. It also may be a classifier to perform classification
(Boldrini et al., 2019). Usually, the end-to-end DL approach
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TABLE 1 | Summary of deep learning models for H&N tumor Pathomics analysis.

Topic H&N tumor subtype Task Model References

H&N tumor
detection and
classification

H&N squamous cell
carcinoma (HNSCC)&
thyroid carcinoma

Malignant vs. non-malignant classification CNN Witjes et al., 2018

OSCC According to the keratin pearl to classify the high-grade or low-grade
OSCC

CNN Das et al., 2018

OSCC Malignant vs. non-malignant classification in CLE image CNN Aubreville et al., 2017

Oral tumor Malignant vs. benign vs. precancerous classification CNN Jeyaraj and Samuel Nadar, 2019

H&N tumor
segmentation

OSCC Tumor margin detection and segmentation CNN Halicek et al., 2018

OSCC Segmentation the boundary of tumor and normal tissue CNN Halicek et al., 2017

TSCC Tumor margin detection and segmentation CNN Yu et al., 2019

OSCC Quantity nuclear morphology to stratify patients of high or low risk CNN Lu et al., 2017

OSCC Based on clinic-hiotopathology features to predict patient’s outcome DL Kim et al., 2019

OSCC Quantity tumor infiltrating lymphocytes to predict the patients’ outcome
and treatment response

CNN Shaban et al., 2019

H&N, head and neck; OSCC, oral squamous cell carcinoma; CNN, convolution neural network; CLE, confocal laser endomicroscopy; DL, deep learning.

TABLE 2 | Summary of machine learning and deep learning models for H&N tumor Radiomics analysis.

Topic H&N tumor subtype Task Model References

H&N tumor
prognosis

H&N squamous cell
carcinoma (HNSCC)

Loco-regional control
(LRC)

PCA Bogowicz et al., 2019b

head and neck cancer
(HNC)

Z-Rad radiomics software Bogowicz et al., 2019a

Locally advanced head
and neck cancer

Free LifeX software package Cozzi et al., 2019

HNSCC Overall survival (OS) RadiomiX Discovery Toolbox. Keek et al., 2020

In-house built Accurate tool Martens et al., 2020

LASSO Yuan et al., 2019

PCA Mes et al., 2020

H&N tumor Random survival forests (RSF) and random forest (RF) Leger et al., 2019

Velocity AI v3.0.1 software and Imaging Biomarker
Explorer and k-medians

Tosado et al., 2020

Matlab R2018b Lv et al., 2020

Z-Rad software and Hierarchical Clustering Bogowicz et al., 2020

IBEX, an open-source radiomics tool Ger et al., 2019

Aryngeal squamous cell
carcinoma

LASSO Chen L. et al., 2020

Biologic markers
prediction

Oropharyngeal
squamous cell
carcinoma

HPV status prediction In-house developed software, using Matlab 2014a Leijenaar et al., 2018

Oropharyngeal cancers HPV status prediction PCA Bagher-Ebadian et al., 2020

HNSCC HPV status and T-cell
infiltration prediction

Unsupervised consensus clustering and PCA Katsoulakis et al., 2020

H&N tumor
recurrence and
metastasis

HPV-related
Oropharyngeal
Carcinoma

Distant metastasis Unpublished MATLAB code Kwan et al., 2018

H&N tumor Metastatic lymph nodes Naive Bayes, and k-nearest neighbor classifiers Tran et al., 2019

Locally advanced head
and neck cancer

Recurrence Random forest Beaumont et al., 2019

H&N tumor Lymph node metastasis 3-dimensional CNN Zhou et al., 2018; Chen et al.,
2019

Papillary thyroid
carcinoma

SVM Liu et al., 2019

H&N tumor Matlab Zhai et al., 2020

H&N, head and neck; PCA, principal component analysis; LASSO, the least absolute shrinkage and selection operator; SVM, support vector machine.
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FIGURE 2 | Example of segmentation of nuclei in a cell layer on WSI images. (A,B) Illustrations of nucleus segmentation based on the DL model. (C) The original
image of immunohistochemical staining. (D) Nucleus segmentation for immunohistochemistry-positive cells. (E) Nucleus segmentation for
immunohistochemistry-negative cells.

FIGURE 3 | Example of epithelial segmentations on WSI images. (A) The original image. (B) Black curves indicate the segmented boundary of the epithelium.
(C) Input patches for training the DL network. (D) Schematic of a deep learning framework.
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FIGURE 4 | Workflow and general framework for DL approaches in digital pathology. (A) The original WSI image. (B) Different resolution of WSI images before input
the DL network. (C) The Schematic of a deep learning framework. (D) The output of different resolution of WSI images. (E) The integration of multi-omics data.

performed better than none end-to-end learning. However, as for
pathomics, one end-to-end DL model cannot perform multiple
tasks simultaneously. Lei et al. (2019) trained a convolutional
neural network by DL to extract mitosis features automatically
and proposed a network to determine the location of all mitotic
cells. This approach showed an unexpectedly high accuracy in
the International Conference on Pattern Recognition (ICPR2012)
mitosis detection test dataset. The remaining challenges include
accurate identification and enumeration of mitotic cells in two-
dimensional (2D) digital histology images. The imaging of
three-dimensional (3D) tissues in 2D results in loss of spatial
information. Radiomics enables enhanced 3D assessment of
tumor growth by quantifying changes in tumor cellularity and
angiogenesis. Radiomics analysis also shows potential for the
accurate quantification of heterogeneity and outcome prediction.

Microscopic cell structure recognition is emphasized in
pathomics. A common strategy for detecting cells or nuclei is
to train a CNN classifier as a pixel classifier, in which a patch
centered on the object of interest is used to train the network
under supervised conditions. Trained CNN models typically
comprise two classifiers (yes or no) and can be applied to WSI in
a sliding window to detect all histological components of interest
and output a probability map, where each pixel is transferred to
a probable value. Therefore, in principle, the target objects can be
located by finding a local maximum in the generated probability
map. Fully convolutional networks can share calculations on
sliding windows. After completing nuclear or mitotic detection
tasks, it begins counting or extracting quantitative indicators in
WSI. The algorithm is built on mapping an input image patch to
a density map, which is used to estimate the number of cells in
the original image.

Deep learning also plays an important role in the analysis
of tumor microenvironment characteristics (TMC). The crucial
step in TMC analysis is segmenting different types of tissue
and cell structures in pathology images. Tumor cells can be
classified into parenchymal and stromal cells. Niranjan and
Sarathy (2018) reported the ratio of tumor to stroma (TSR) as
a reliable histologic predictor of overall survival and outcome

in OSCC. In a cohort of 60 OSCC patients, the 3-year overall
survival (OS) and disease-free survival (DFS) rates of patients
with >50% intratumor stroma had been shown to be better than
the patients with <50% intratumor stroma.

The segmentation task is more difficult than mitosis detection
because parenchyma segmentation can be labeled by experts
at lower magnifications. However, stroma (e.g., lymphocytes,
macrophages, fibroblasts, etc.) must be analyzed at high
magnification. Indeed, × 40 magnification performed better
than × 20 magnification for nucleus segmentation. By contrast,
epithelium segmentation is typically more precise by experts
at × 20 than at 40 × magnification, as indicated by a higher
accuracy and F score (Janowczyk and Madabhushi, 2016). To
remedy this drawback, the fully convolutional network (FCN)
and UNet were designed to accept discretional size as an input
and product proportionate-sized outputs by removing all fully
connected layers and introducing unsampled layers to offset the
shortcomings of downsampling in CNN (Zhou et al., 2019).
Considering that head and neck tumors are heterogeneous
and complex, segmentation may involve varied anonymous
anaplastic cells and then can be achieved by data augmentation.
Halicek et al. (2018) trained a CNN to segment the tumor and
normal tissue of OSCC with 81% accuracy, 84% sensitivity, and
77% specificity. The sensitivity and specificity of FCN for cervical
tumor segmentation on 3D FDG-PET images were 88 and 98%,
which were markedly superior to CNN. Unfortunately, FCN has
not been used for segmentation of pathologic images of head
and neck tumors. Moreover, tumor segmentation accuracy is
associated with loss function. Now, the well-known loss function
is cross-entropy loss. A new loss function, class-wise DSC loss,
for training the segmentation network of colonoscopy pathology
images was presented by Feng et al. (2020).

Multiomics Analysis in Tumor Prognosis
and Metastasis
The high heterogeneity and complexity of head and neck tumor
pathology images hamper the prediction of outcomes only by
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TNM stage. In recent years, more and more scholars have
been interested in the potential of DL networks for predicting
postoperative outcomes. The applications of radiomics to predict
overall survival, biomarker status, recurrence, distant or local
metastasis, and lymph node metastasis are summarized in
Table 2. Tixier et al. used the Genomica software to analyze PET
and transcriptomics data of 45 patients with locally advanced
head and neck cancer. They applied a fuzzy locally adaptive
Bayesian (FLAB) algorithm to assess the associations between
radiomics features (a total of 28 image biomarker standardization
initiative-compliant radiomic features) (Zwanenburg et al., 2020)
and alterations of biological pathways (e.g., extracellular matrix
organization, cell cycle, signal transduction, cell cycle, etc.).
The results demonstrated that FDG-PET radiomic features
were associated with cell cycle, DNA repair, extracellular
matrix organization, immune system, metabolism, and signal
transduction pathways, providing a thorough understanding of
genetic mutations and minimizing the costs (Tixier et al., 2020).
Zhu et al. (2019) integrated the genome-wide multiomics data of
126 patients with head and neck SCC with CT imaging data and
found the significant association between genomic characteristics
and CT features. The use of DL together with sophisticated
biomarkers can significantly improve prognostic and predictive
accuracy. Subsequently, the DL-extracted imaging features of
morphology structure on digitized H&E-stained tissue sections
have been used for risk stratification of head and neck tumor
patients. Patients with p16-positive human papillomavirus-
related oropharyngeal SCC have a more favorable prognosis than
those negative for P16 (Ali et al., 2013). Lewis et al. (2014) used a
typical ML approach (the random forest decision tree) to extract
nuclear morphologic features and predict progression. Before
the advent of DL, improvement of prognosis was evaluated by
multifactor analysis, conventional logistic regression, and Cox
analysis in traditional ML models. However, the absence of a
decision rule and linear combinations of covariates hampered
the prediction of outcomes. DL-based survival prediction has
improved predictive accuracy and, together with nonlinear
algorithms, will facilitate precision medicine. Therefore, it is
suitable for predicting the survival of inpatients (Tan et al., 2016).
Tseng et al. constructed a DNN to predict the survival of patients
with oral tumors using clinical variables and histopathological
features. It was suggested that the DNN model established by
data mining was superior to logistic regression in terms of
both training accuracy and cross-validation accuracy. Brennan
et al. (2017) used an unsupervised cluster analysis method to
interpret the genomics and epigenetics data of morphologically
atypical head and neck SCC and found CpG island methyl
groups in atypical SCC. Therefore, novel prognostic factors, such
as genetic mutations and molecular markers, combined with
clinicopathologic and radiologic features and a multi-nonlinear
DL network would yield optimal results.

Proteomics and transcriptome have also been used to study
lymph node and distant metastasis and recurrence of SCC
patients. Onken et al. (2014) used an unsupervised clustering
algorithm to extract transcriptome signature predicting distant
metastasis in oral tumor over four SCC datasets. Xu et al.
(2014) applied a ML approach called maximum relevance

minimum redundancy algorithm to a set of transcriptome data
generated from papillary carcinoma and anaplastic carcinoma
for differential diagnoses. The lung is the most common site
of distant metastasis of OSCC. Primary SCC can also occur in
the lung. Through supervised learning and analysis of proteomic
data, Bohnenberger et al. (2018) found the vital difference of
protein characteristics between lung metastatic head and neck
SCC and primary lung SCC. Their data provided reference
information for the origin of lung SCC. Carnielli et al. (2018)
used histological morphology-oriented proteomics analysis of
the protein expression in tumor islands and stroma to forecast
the possibility of tumor recurrence and lymph node metastasis.
Six ML approaches were used by Kaddi and Wang (2017) to
analyze proteomics and transcriptome data, including KNN,
SVM, naive Bayes, DT, AdaBoost, and RF. It was shown that the
prognostic model based on both transcriptome and proteomics
data had better predictive performance than transcriptomics or
proteomics alone.

Diagnostic Reports: Automatic
Extraction of Tumor Information
Zhang et al. (2017) developed MDNet, which generated
pathological reports by directly mapping pathology images
with simultaneous retrieval of pathology images according to
symptom descriptions. MDNet added a language network to
the original image model. Integration of a language model with
the multiscale features proposed by the image model allowed
the identification of critical image features and enabled the
direct mapping from words to pixels. Changes in the size or
density of nuclei and epithelial thickness may indicate neoplastic
invasion. However, these discriminant imaging features were
not directly supported to generate a diagnostic report. MDNet
allowed direct multimodal mapping from medical images and
diagnostic reports. Mimicking diagnosis by pathologists, long
short-term memory (LSTM) networks were used to generate
semantic information as a language model. The LSTM was a
representative gated RNN that controlled the forget gate and
input gate to emphasize or forget some weights. It could reduce
the problem of multiple layers and vanished gradient multilayers
from input to output.

Radiogenomics Analysis for
Radiotherapy Patients
Radiogenomics is a computational nomenclature which
identifies correlations between radiomics imaging features
and genomics or proteomics data. These imaging feature
correlations can be used to predict a tumor’s molecular
profile in clinical radiomics data (West and Rosenstein, 2010).
Radiogenomics has two goals: i) discover the patients who are
more likely to develop radiotherapy complications based on
molecular data and (ii) analyze the targeted molecular pathway
responsible for radiotoxicity in radiation-induced normal
tissue (Kerns et al., 2014). Postoperative radiotherapy is an
effective treatment for head and neck tumors. The existence of
radiosensitivity and radioresistance may be related to genetic
factors partially. The remaining differences between individuals
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were caused by differences in treatment (radiation dose),
physical habits, and random factors (Rattay and Talbot, 2014).
Werbrouck et al. (2009) reported that the DNA repair genes
XRCC3 and Ku70 were connected to the intensity of dysphagia
after radiotherapy in H&N tumor in 2009. For the study of
postradiotherapy mucositis, Yang et al. (2020) sequenced and
located the gene expression in 1,497 patients with postoperative
radiotherapy. They found that 64 target genes were enriched
in the process of telomerase regulation, which confirmed
the importance of telomere function in the development of
radiation-induced adverse reactions. The combination of PET-
based spatial radiation features and sequencing data provided a
new perspective for further revealing the spatial heterogeneity of
tumors (Clasen et al., 2020). Furthermore, the predictive analysis
of gene expression and cellular and molecular expression can
be provided from a non-invasive point of view, based on the
radiological characteristics and gene differential expression data
of head and neck tumors obtained from the TCGA and TCIA
databases (Katsoulakis et al., 2020).

DIFFICULTIES AND EXPECTATION

AI is highly dependent on a robust and large database, but
the database of pathological slides of head and neck tumors
has not been established yet. Apart from the hardware needed
to set up the database, setting up an autoprocessed image
database is also needed. When there were images captured from
clinical cases, the database could have the images with their
properties at the same time, which would help in further analysis.
As time goes on, the database could grow by itself (Ibrahim
et al., 2020). The low-quality images are also a problem for DL
analysis. According to a jointed framework proposed by Chen
J. et al. (2020), a novel transfer learning strategy called channel
fusion transfer learning and a deep super-resolution framework
called SRFBN+ were dedicated to generating higher-resolution
slice images with lower-resolution ones as input. The most
successful application of DL in medical image analysis has been in
supervised learning. On the other hand, the rarity of pathologists
added the extra difficulties in data cleaning and labeling, while
the high heterogeneity of head and neck tumors means that many
rare tumors need to be accurately labeled.

A crucial step is to avoid subjective and sample biases in
the training sets as the quality of the output depends on the
quality of the input data (Oakden-Rayner, 2020). So, establishing
a unified standard to normalize the image input in the network
by multi-institution datasets can not only reduce the bias from
the samples and the bias caused by inconsistent diagnostic from
the physicians but also fully fit and train the model to reduce
overfitting and reduce to a maximum the highly opaque nature
of medical image (Martorell-Marugán et al., 2019). However,
current DL algorithms are mainly trained on a small dataset from
a single center (Jiang et al., 2020). The limited availability of
well-characterized and adequately stored clinical tumor and non-
tumor samples is a major challenge in proteomics and genomics
researches (Matta et al., 2010).

For the algorithms themselves, the tendency has been to
propose new algorithms rather than optimize those already

used, leading to the conclusion that there is no improvement
of some subdomain algorithms. In addition, due to the
limitations of, for instance, data and computational power, the
improvement of algorithms must take into account various trade-
offs. Additionally, some studies used a non-open-source code or
a non-open-source model, such as an in-house developed model,
hampering model verification in other types of tumors (Parmar
et al., 2015; Leijenaar et al., 2018). A flowchart demonstrating
the relationship for the subsection of difficulties and expectation
of DL in tumor diagnosis and multiomics analysis is shown in
Supplementary Figure 2.

Difficulties Related to Unified Evaluation
Standards
The lack of unified innovation evaluation standards in AI has led
to some exaggeration of the improvements achieved. This can be
overcome by a variety of methods, e.g., an open-source or source
model. Unifying evaluation standards is difficult but is possible
for some mature domains. The relevant data management
domains are as follows: (i) administrative standards, (ii) patient
privacy protection standards, and (iii) intellectual property
protection standards. The establishment of data management
standards would allow access to diverse anonymized imaging
datasets. Technical standardization cannot resolve all of the issues
described in this review. The use of different image normalization
or style conversion methods (e.g., rotating, cropping, zooming,
and image histogram-based modifications) for preprocessing
could overcome the technical obstacles.

Difficulties in Image Analysis
The architectures of CNNs have been especially powerful
for computer vision, particularly in image interpretation and
procession. WSI combined with DL algorithms for tumor
detection, classification, and prognosis prediction has played
an ever-increasing part in supporting pathologists in clinical
assessments. The main components of CNN are convolutional
layers and pooling layers. Although CNN has advantages in
the processing of object detection, it has notable drawbacks:
(1) both the training and the detection process is considerably
time-consuming and (2) the normalization method would lead
to lose some discriminative details. FCN is suitable for image
segmentation at the pixel level. It consists of convolution and
deconvolution layers, which can accept input images of any
size and retain the spatial information of the original input
lines. The major disadvantages of FCN may be that it is
noisy and contains redundant information, requiring a huge
number of reliable samples. To overcome the issues mentioned
above, more novel architectures (e.g., UNet++, SegNet, and
ENet) based on FCN or CNN have been proposed for image
segmentation. Pan et al. (2020) proposed a DL model based on
the architectures of FCN to automatically recognize lymph node
metastasis of esophageal SCC. Compared with previous studies
focused on the isolated tasks in the analysis of pathology and
radiology images, the integration of independent DL models
into a general model would be beneficial (Wang et al., 2019).
It was also anticipated that biological pathways and gene

Frontiers in Genetics | www.frontiersin.org 9 February 2021 | Volume 12 | Article 624820

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-624820 February 4, 2021 Time: 21:32 # 10

Wang and Li DL in Head and Neck Tumor Multiomics

regulation networks would be incorporated into prediction
models, improving their performance and interpretability. For
multimodal learning, collecting data from the required modalities
simultaneously could be problematic. A slight disturbance to the
inputs of multimodal can influence the stability of CNN. Lin et al.
(2020) trained a multiscale activity transition network to provide
an activity state pyramid consisting of multiscale recurrent neural
networks to capture the accurate feature of input. Transfer
learning is frequently used and is an effective pretraining
strategy. The fusion of different modal representations is the
key point of a multimodal task. Specific fusion operations
are based on an attention mechanism or bilinear pooling. In
practice, fusion operations are often diverse and complicated
(Mormont et al., 2020).

Integration of Multiomics Data and
Precision Medicine
Now, DL algorithms still have several difficulties of integrating
multiomics data or various sources of information such as
pathology images and electronic medical records. The use of DL
to accomplish simple tasks can yield useful results. Furthermore,
complex datasets, abundant neural network architecture, and
adequate DL methods are anticipated to provide useful
information for precision medicine. Pathomics and radiomics are
crucial components of multiomics, which also include genomics,
transcriptomics, proteomics, and metabolomics information.
Although there are still some limitations that restricted the
direct clinical usage of multiomics analysis, there is still an
increasing effort in solving the drawbacks to provide promising

applications. The increasing number of omics datasets is fuelling
the quantitative analysis of biological specimens at the gene,
cell, and tissue levels. It will generate novel hypotheses on the
molecular mechanisms of tumor development and progression
for guiding precise diagnosis and treatment.
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