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Abstract
Circular RNAs(circRNAs) are a large family of RNAs shaping covalently closed ring-like molecules and have become a 
hotspot with thousands of newly published studies. Stem cells are undifferentiated cells and have great potential in medical 
treatment due to their self-renewal ability and differentiation capacity. Abundant researches have unveiled that circRNAs 
have unique expression profile during the differentiation of stem cells and could serve as promising biomarkers of these cells. 
There are key circRNAs relevant to the differentiation, proliferation, and apoptosis of stem cells with certain mechanisms 
such as sponging miRNAs, interacting with proteins, and interfering mRNA translation. Moreover, several circRNAs have 
joined in the interplay between stem cells and lymphocytes. Our review will shed lights on the emerging roles of circRNAs 
in regulating the fate of diverse stem cells.
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Introduction

Circular RNAs(circRNAs) are a large class of non-coding 
RNAs forming covalently closed loop structures with neither 
5′–3′ polarities nor polyadenylated tails, which are different 
from linear RNAs. CircRNAs are more stable than linear 
RNAs as a result of their ring structures protecting them 
from exonuclease-mediated degradation [1]. Unlike canoni-
cal linear splicing, circRNAs are produced from precursor 
mRNAs (pre-mRNAs) by a non-canonical splicing event 
called backsplicing in which a downstream splice-donor 
site is covalently linked to an upstream splice-acceptor site, 
thus forming a ring structure. The first report of circRNAs 
was published in 1976 by Sanger et al., who found viroids 
to be covalently closed circular RNA molecules [2]. How-
ever, circRNAs were regarded as experimental artifacts or 

accidental splicing by-products at that time [3]. Develop-
ment of RNA deep sequencing and ribosomal RNA deple-
tion technology made it possible to take a deeper look at 
circRNAs and a surprising work declared circRNAs to be 
extensive in human genes [4]. In 2013, two articles were 
posted simultaneously in Nature which discovered two 
circRNAs to be microRNA(miRNA) sponges: antisense 
to the cerebellar degeneration-related protein 1 transcript 
(CDR1as) and circular sex-determining region Y (circSry), 
unveiling functions of circRNAs for the first time [5, 6]. 
Plenty of researches have emerged ever since and circRNAs 
are now found to be widespread, diverse, conserved, and cell 
type specific [7–9].

The detailed mechanisms for circRNA biogenesis have 
not been completely illuminated. There are several dominat-
ing models about circRNAs biogenesis. Jeck et al. proposed 
two models about circRNAs biogenesis. One was termed 
“lariat-driven circularization” which assumed that lariat for-
mation during exon skipping, an event splicing alternative 
exons out of the final mRNA product as a lariat, triggered 
circularization. The other one was “intron-pairing-driven 
circularization” which indicated that base pairing between 
inverted repeat elements initiated circularization via bring-
ing a downstream splice-donor site into proximity with an 
upstream splice-acceptor site [7]. Liang et al. also added 
evidence to this model by demonstrating that the miniature 
introns containing splice sites and short (30–40 nt) inverted 
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repeats were sufficient for circRNAs formation [10]. Besides 
from intron pairing, RNA binding proteins (RBPs) were 
also able to mediate looping formation [11, 12]. Moreover, 
RNA-editing enzyme ADAR1 suppressed the biogenesis of 
circRNAs by Adenosine-to-Inosine (A-to-I) editing which 
could diminish RNA pairing structure of flanking introns 
and decrease backsplicing efficiency [13]. CircRNAs are 
discovered to have important biological functions [14], but 
most of which have been miRNA sponges [5, 6]. CircR-
NAs located in cytoplasm contain complementary miRNA 
binding sites and could bind to miRNA and inhibit their 
effects on target mRNAs, which is termed “miRNA sponge”. 
CircRNAs could also bind to proteins and suppress their 
functions [15, 16]. In the nucleus, circRNAs could regu-
late parental gene transcription [17] and regulate alternative 
splicing [18, 19]. In addition, circRNAs were considered to 
be unable to translate for a long time. However, researchers 
found that circRNAs could translate into proteins or pep-
tides [20–23]. Further studies are necessary to clarify other 
potential functions of circRNAs.

Stem cells are immature cells talented to immortalize 
themselves via self-renewal and to produce mature cells of 
one or several specific tissues through differentiation [24]. 
Long non-coding RNAs (LncRNAs) have been confirmed 
to be involved in the differentiation of stem cells in many 
studies [25]. Similar tolncRNAs, circRNAs also belong to 
competing endogenous RNAs and accumulating evidence 
has suggested that they may participate in regulating growth 
and differentiation of various types of stem cells and in the 
retrieval of stemness [9, 11, 20]. This review will concen-
trate on the emerging roles of circRNAs in intervening in 
the fate of stem cells.

CircRNAs’ general characteristics 
in the differentiation of stem cells

CircRNAs exhibit unique expression patterns 
in the differentiation of stem cells

CircRNAs were exposed to be conserved from human to 
simple organisms, for instance, fungi [6, 7, 26]. Likewise, 
the profile of circRNAs in the differentiation of stem cells 
was also revealed to be conserved. CircRNAs were con-
served in myoblasts and myotubes between human and 
mouse with overlap being 40% [20]. Genes from which 
circRNAs arose during the differentiation of hematopoietic 
stem cells (HSCs) were enriched in housekeeping functions 
[27]. During the differentiation and β-adrenergic stimula-
tion of human-induced pluripotent stem cell-derived cardio-
myocytes (hiPSC-CMs), circRNAs were conserved between 
human, mouse, and rat and four homologs: circMYOD, circ-
SLC8A1, circATXN7, and circPHF21A were revealed to 

associate with ribosomes and/or AGO2 protein complexes, 
signifying a potential role for these circRNAs in the regula-
tion of RNA translation [28].

Numerous research papers have pointed out that cir-
cRNAs are differentially expressed, mostly upregulated 
(Table 1) and derived from exonic regions in the differen-
tiation of stem cells [29–32]. Nevertheless, thousands of 
novel intronic circRNAs were noticed in mouse myoblasts 
far more than exonic circRNAs via a novel high-purity cir-
cular RNA isolation method (RPAD), questioning whether 
the result of most aberrantly expressed circRNAs coming 
from exons was due to inexact methods [33]. Upregulation 
of circRNAs was in line with preceding studies and often 
treated as a result of their stability and regulation of trans-
acting factors, such as ADAR1, DHX9, and muscleblind 
(MBL) [20, 34, 35]. During the differentiation of human 
embryonic stem cells(hESCs) towards 3D-laminated retina, 
MBL was found to be upregulated as circularization pro-
motor, ADAR1,and DHX9 were downregulated as circu-
larization inhibitor and circRNAs were increased [32]. This 
study also found that circRNAs produced from non-coding 
genes accounted for a higher percentage of transcriptions 
from their host genes than circRNAs from coding genes. The 
top two non-coding circRNAs: circRMST and circFIRRE 
were found to be the dominant isoforms of their original loci 
which were proved to involve in developmental processes 
[32, 36, 37]. Apart from trans-acting factors, Xie et al. spec-
ulated that certain lengths might prefer circularizing[30]due 
to their examination of differentially expressed circRNAs 
lengths in subventricular zone (SVZ, recognized as stem 
cells niche in the brain of mature mammals) compared to 
cortex. They found that most exonic circRNAs (82.2%) were 
shorter than 1000nt, with the average length being 537nt. 
Notable increases were also observed in the genomic span 
of circRNAs during the differentiation of hESCs [32].

It might be assumed that the expression level of cir-
cRNAs is relevant to their host gene expression. Never-
theless, many articles discovered that expression of some 
circRNAs was independent of expression of their host 
genes [28, 46, 50, 51], which meant some circRNAs and 
the linear RNA products of their host gene did not change 
simultaneously. This indicated that circRNAs not only 
were by-products of mRNA splicing, but also regulated 
products of alternative splicing, putting on an additional 
layer to the complicacy of genetic expression. Kristensen 
et al. found that circRNAs were overall increased during 
the differentiation of epidermal stem cells (EpSCs). DNA 
methylation did not regulate the aberrantly expressed 
circRNAs directly since no overlap was found between 
the upregulated circRNAs upon differentiation and upon 
knockdown of DNMT3A or DNMT3B. They also found 
upregulated circRNAs had more AGO2 and miRNA bind-
ing sites and less Alu-mediated biogenesis than stably 



Molecular and Cellular Biochemistry 

1 3

expressed circRNAs [50]. The former suggested that dif-
ferentiated cells were less apt to miRNA regulation with 
stronger effects of circRNA decoy, while the latter coin-
cided with the upregulation of DHX9 in the differenti-
ated cells. DHX9 was confirmed to weaken the expres-
sion of circRNAs with flanking reverse complementary 
Alu repeats [52]. The authors came up with an assumption 
that cells positively attenuated the expression of some use-
less or undesirable circRNAs via upregulating DHX9 [50] 
There are also some studies about circRNAs’ profile in 
stem cells involved in diseases or under specific conditions 
(Table 2), exposing the underlying effects of circRNAs on 
stem cells against internal or external changes and on stem 
cells repairing damaged tissue.

CircRNAs may serve as promising biomarkers 
for distinguishing stem cells

CircRNAs have longer half-lives than corresponding lin-
ear RNAs on account of their greater resistance to RNA 
exonucleases. Being secreted extracellularly with high 
stability and prevalence makes circRNAs promising bio-
markers [56]. Numerous articles have reported circRNAs 
as potential molecular markers for cancer [57, 58]. But only 
few uncovered the potency of circRNAs as biomarkers for 
distinguishing stem cells or specific cell lines differenti-
ated from stem cells. CircFOXP1 came from the FOXP1 
gene and was verified as a marker of mesenchymal stem 
cells (MSCs) undergoing strict examination. Firstly, it was 

Table 1  CircRNAs’ profile during the differentiation of stem cells

BMSCs bone marrow stem cell, ADSCs adipose-derived stromal cells, MSMSCs maxillary sinus membrane stem cells, PDLSCs periodontal liga-
ment stem cells, DFCs dental follicle cells, IPSCs induced pluripotent stem cells, NSCs neural stem cells, ESCs embryonic stem cells, EpSCs 
epidermal stem cells, HSCs hematopoietic stem cells

Differentiation Methods Cells Species Results References

Mesodermal Osteogenesis Microarray BMSCs Homo sapiens 3938 upregulated and 1505 
downregulated

[38]

Microarray ADSCS Homo sapiens 171 upregulated and 119 
downregulated

[39]

Microarray MSMSCs Homo sapiens 32 upregulated and 18 down-
regulated

[40]

High‐throughput sequencing PDLSCs Homo sapiens 766 upregulated and 690 
downregulated

[41]

High‐throughput sequencing PDLSCs Homo sapiens Changed in a temporal man-
ner

[42]

High‐throughput sequencing DFCs Rattus norvegicus 138 upregulated and 128 
downregulated

[43]

High‐throughput sequencing MC3T3-E1 cells Mus musculus 74 upregulated and 84 down-
regulated

[31]

Microarray ADSCs Mus musculus Changed in a temporal man-
ner

[44]

Microarray MC3T3-E1 cells Mus musculus 14 upregulated and 44 down-
regulated

[45]

Myogenesis Microarray Myoblasts Homo sapiens Overall increased [20]
Cardiogenesis High‐throughput sequencing IPSCs Homo sapiens Overall increased [46]

High‐throughput sequencing IPSCs Homo sapiens 251 differentially expressed [28]
Microarray IPSCs Homo sapiens 127 upregulated and 99 

downregulated
[47]

Hematopoiesis SRA repository from NCBI
Microarray

HSCs
HSCs

Homo sapiens
Mus musculus

Overall increased
107 upregulated and 49 

downregulated

[27]
[48]

Ectodermal Neurogenesis High‐throughput sequencing NSCs Rattus norvegicus 471 upregulated and 508 
downregulated

[30]

High‐throughput sequencing NSCs Mus musculus Changed in a temporal man-
ner

[49]

Retinogenesis High‐throughput sequencing ESCs Homo sapiens Increased from day45 to day0 
and stable from day90 to 
day45

[32]

Keratogenesis High-throughput sequencing EpSCs Homo sapiens Overall increased [50]



 Molecular and Cellular Biochemistry

1 3

validated as the strongest downregulated circRNA in all 
differentiated mesodermal cell types compared with MSCs. 
Then, here came the same results in primary human tissues. 
Thirdly, a time course analysis confirmed the degradation of 
circFOXP1 during MSCs differentiation. Finally, samples 
originating from different sources(cord blood, bone mar-
row, adipose tissue and Wharton’s jelly) and from male and 
female donors demonstrated that circFOXP1 expression con-
nected with cell sources and gender, indicating this circRNA 
could be a specific biomarker of undifferentiated MSCs [59].

HiPSC-CMs produced by present methods are not pre-
pared for clinical use as those cells are heterogeneous 
groups containing non-CM cells. Scientists eagerly search 
for reliable circRNA biomarkers in cardiac differentiation 
for screening hiPSC-CMs. Lei et al. produced hiPSCs from 
fibroblasts and then differentiated hiPSCs into CMs. Results 
revealed that circALPK2, circCACNA1D, circSLC8A1 and 
circSPHKAP were abundant in hiPSC-CMs and particularly 
ample in fetal heart instead of other tissues (brain, spine, 
liver and stomach), which meant they were cardiac specific 
[46]. Those four circRNAs were also validated to increase in 
the differentiation of hESC towards CMs and circSLC8A1-1 
was proved to be the most abundant cardiac-expressed cir-
cRNA [51]. These circRNAs hold promising potential to 
be biomarkers of cardiomyocytes. Xie et al. discovered 41 
uniquely expressed circRNAs in adult rat SVZ and believed 
that they could become biomarkers of mature neural stem 
cells due to their tissue specificity. Compared to the two 
well-designed trials above, this speculation obviously 
needed more extensive investigation [30].

Key circRNAs in stem cells

We summarized key circRNAs involved in regulating 
stemness and pluripotency of stem cells, and in the dif-
ferentiation, proliferation, and apoptosis of stem cells. We 

also referred to two circRNAs involved in the ‘cross-talk’ 
between stem cells and lymphocyte. These circRNAs play 
pivotal roles in stem cells (Fig. 1).

CircRNAs regulate stemness and pluripotency 
of stem cells

CircBIRC6

CircBIRC6 originated from gene BIRC6 locating on human 
chromosome 2. Yu et al. found that circBIRC6 promoted 
pluripotency of hESCs by binding to miR-34a and miR-
145 [60]. MiR-34a and miR-145 were demonstrated to 
attenuate the function of pluripotency-associated genes: 
NANOG, OCT4, and SOX2 [61]. CircBIRC6 could relieve 
the suppression of abovementioned target genes as a miRNA 
sponge. The experimental results also showed that NANOG 
and OCT4 upregulated the level of one splicing factor (SF): 
epithelial-splicing regulatory protein 1 (ESRP1). ESRP1 
facilitated the biogenesis of circBIRC6 in hESCs. There-
fore, a molecular circuitry of circBIRC6 regulating hESCs 
pluripotency was formed. This research also showed that 
disturbance of ESRP1 lowered the level of NANOG and 
OCT4, indicating a possibility that ESRP1 directly regu-
lated OCT4 and NANOG to reinforce pluripotency. ESRP1 
and OCT4/NANOG might form a positive feedback as they 
mutually modulated the expression and effects of themselves 
and circRNAs, thus maintaining the pluripotency in hESCs 
(Fig. 2). CircCORO1C was proved to influence the pluripo-
tency of hESCs, too. However, it was discovered not likely 
to act as a miRNA sponge or mRNA competitor and the 
authors surmised that it might work through interacting with 
proteins [60].

Although circBIRC6 and circCORO1C were con-
sidered to intervene pluripotency, the expression of 
circBIRC6 or circCORO1C alone was insufficient to 
reprogram human fibroblasts into iPSCs. However, 
co-expressing circBIRC6 or circCORO1C with OCT4, 

Table 2  CircRNAs’ profile in stem cells involved in diseases or under specific conditions

BMSCs bone marrow stem cell, WJ- MSCs Wharton’s jelly-derived MSCs, PDLSCs periodontal ligament stem cells, sMSCs skin mesenchymal 
stem cells

Methods Cells Species Conditions Results References

High‐throughput sequencing BMSCs Rattus norvegicus Silence of estrogen receptorβ 78 upregulated and 68 downregu-
lated

[53]

Microarray WJ-MSCs Homo sapiens Coculture with damaged endo-
metrial stromal cells

5423 upregulated and 2334 down-
regulated

[54]

High‐throughput sequencing PDLSCs Homo sapiens Mechanical force 1191 upregulated and 1487 down-
regulated

[29]

High-throughput sequencing sMSCs Homo sapiens Normal skin and Psoriatic lesion 123 upregulated and 6 downregu-
lated

[55]



Molecular and Cellular Biochemistry 

1 3

SOX2, KLF4, and c-MYC (OSKM) in human fibro-
blasts potentiated iPSCs formation. Perhaps the reason 
lay in that circBIRC6 or circCORO1C alone was not 

enough to initiate all pathways and combination with 
conventional factors OSKM made reprogramming more 
effective [62].

Fig. 1  Key circRNAs in stem cells. Key circRNAs involved in the 
pluripotency and stemness, proliferation, differentiation, and apop-
tosis of stem cells are classified according to different kinds of stem 
cells: embryonic stem cells and adult stem cells from different organs. 
CircRNAs’ functions are marked in different colors. Red fonts: pro-
moting or retaining; Blue fonts: inhibiting. ESC embryonic stem cell, 

SMSC skeletal muscle satellite cell, BMSC bone mesenchymal stem 
cell, HucMSC mesenchymal stem cell derived from human umbilical 
cord, PDLSC periodontal ligament stem cell, DFC dental follicle cell, 
MSMSC maxillary sinus membrane stem cell, HSC hematopoietic 
stem cell, ISC intestinal stem cell
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CircFOXP1

CircFOXP1 was derived from the FOXP1 gene spanning 
five exons and was flanked by introns containing many Alu 
repeats on both sides. Its parental gene FoxP1 was found 
to mediate stabilization of β-catenin, while translocation of 
stabilized β -catenin to nucleus promoted the maintenance 
of intestinal stem cells(ISCs) [63] Alessandro et al. studied 

the biogenesis, functions and mechanisms of circFOXP1 in 
MSCs [59]. This study unveiled the pivotal role of circFOX-
P1in maintaining the pluripotency of MSCs through bind-
ing to miR-17–3p and miR-127–5p, resulting in upregulat-
ing their target mRNAs of non-canonical Wnt and EGFR 
pathways. Activation of those two signaling pathways were 
essential to MSCs as sustaining its multipotency and regen-
erative capacity [64, 65]. MSCs was reprogrammed into hiP-
SCs and circFOXP1 was downregulated during the process 
which allowed miR-17-3p/miR-127-5p-mediated inhibition 
of non-canonical Wnt pathway and reinforced the canoni-
cal Wnt pathway. CircFOXP1 was upregulated through the 
process of hiPSCs generating MSCs and an opposite effect 
on canonical and non-canonical Wnt signaling was observed 
[59].

Key circRNAs involve in the differentiation of stem 
cells

Stem cells are expected to differentiate into specific cell line-
ages and repair or replace corresponding tissues in clinical 
treatment. So, it is very important to understand the underly-
ing mechanisms of stem cells differentiation. Here, we sum-
marized key circRNAs involved in the differentiation of stem 
cells (Table 3).

CircZfp609

CircZNF609 was proved to be highly conserved between 
mouse and human genome. It also could translate into 
protein in human myoblasts [20]. CircZfp609 was murine 
ortholog of circZNF609. Wang et al. showed that circZfp609 

Fig. 2  The molecular circuity of circBIRC6 regulating the pluripo-
tency of hESC. CircBIRC6 could sponge miR-34a and miR-145 and 
relieved the suppression of their target genes: NANOG, OCT4, and 
SOX2. NANOG and OCT4 were found to upregulate ESRP1, which 
facilitated the biogenesis of circBIRC6. ESRP1 was also discovered 
to regulate NANOG and OCT4. ESRP1 epithelial-splicing regulatory 
protein 1, AGO2 Argonaute2, hESC human embryonic stem cell

Table 3  Key circRNAs involved in the differentiation of stem cells

DFCs dental follicle cells, PDLSCs periodontal ligament stem cells, HucMSCs mesenchymal stem cells derived from human umbilical cord, 
SONFH-BMSCs bone marrow mesenchymal stem cells from patients with steroid-induced osteonecrosis of the femoral head, BMSCs bone mar-
row stem cells, SMSCs skeletal muscle satellite cells, MSMSCs maxillary sinus membrane stem cells

Cell type Species CircRNA Function Mechanism References

Myoblasts Mus musculus CircZfp609 Inhibit myogenesis Sponge miR-194-5p [66]
Gallus gallus CircSVIL Promote myogenesis Sponge miR-203 [67]

CircFGFR2 Promote myogenesis Sponge miR-133a-5p 
and miR-29b-1-5p

[68]

Bos taurus CircFGFR4 Promote myogenesis Sponge miR-107 [69]
CircFUT10 Promote myogenesis Sponge miR-133a [70]
CircLMO7 Inhibit myogenesis Sponge miR-378a-3p [71]

DFCs Rattus norvegicus CircFGFR2 Promote osteogenesis Sponge miR-133 [68]
PDLSCs Homo sapiens CDR1as Promote osteogenesis Sponge miR-7 [72]
HucMSCs Homo sapiens CDR1as Promote adipogenesis and osteogenesis Unknown [73]
SONFH-BMSCs Homo sapiens CDR1as Promote adipogenesis and inhibit osteogenesis Sponge miR-7-5p [74]
SMSCs Homo sapiens CDR1as Promote myogenesis Sponge miR-7 [75]
MSMSCs Homo sapiens Hsa-circ33287 Promoted osteogenesis Sponge miR-214-3p [40]
BMSCs Homo sapiens CircIGSF11 Inhibit osteogenesis Sponge miR-199b-5p [38]
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could bind to miR-194-5p and sequester its impairment on 
BCLAF1(BCL-2-associated transcription factor1), so as to 
repress the myogenic differentiation [66]. Similarly, former 
study discovered that the balance between miR-194-5p and 
its newfound target gene BCLAF1 regulated differentiation 
and survival of hematopoietic progenitors [76].

CircSVIL and CircFGFR2

CircSVIL located on the reverse strand of chromosome 
2(Gallus, region:14597995-14657468) and was generated 
by exon 6 to 14 of SVIL (ENSGALT00000011863.4). It 
was confirmed that circSVIL enhanced target genes of miR-
203(c-JUN and MEF2C) as a miRNA sponge, and exerted a 
positive effect on chicken myogenesis [67]. Previous study 
verified miR-203 could suppress differentiation of muscle 
cells by decreasing the level of c-JUN and MEF2C, which 
were proved to be significant for myogenesis via loss-and-
gain function analyses [77]. CircFGFR2 also influenced 
chicken myogenesis. It derived from exon 3–6 of fibro-
blast growth factor receptor2 (FGFR2) gene and was dif-
ferentially expressed during the development of chicken 
embryonic skeletal muscle. CircFGFR2 was proved to pro-
mote chicken myoblasts differentiation as sponge of miR-
133a-5p and miR-29b-1-5p, which were disclosed to inhibit 
chicken primary myoblasts differentiation [68]. These two 
miRNAs belonged to RNA families: miR-133 and miR-29, 
respectively. However, the two families were described to 
facilitate mouse myoblasts differentiation, opposite to the 
results in this study [78, 79]. Moreover, with its location 
on chr1:200648164-200658087 in rat dental follicle cells 
(DFCs), loss-and-gain function trials verified the enhance-
ment of circFGFR2 on osteogenesis of rat DFCs through 
targeting miR-133 and relieving its effects on BMP6. BMP6 
was reported previously to increase the osteogenic differen-
tiation [80].

CircFGFR4, circFUT10 and CircLMO7

CircFGFR4, circFUT10 and circLMO7 took part in the 
bovine myogenesis. CircFGFR4, with its host gene FGFR4 
locating on chromosome7, was 963 nucleotides long. MiR-
107 was plentiful in bovine muscle tissue and could be 
decoyed by circFGFR4. In other words, circFGFR4 could 
bind to miR-107, sequester it and inhibit its biological 
function, which is also called circRNAs’ sponge function. 
CircFGFR4 elevated the level of wnt3a as target gene of 
miR-107 and promoted myoblasts differentiation [69].
CircFUT10 got name from its host gene FUT10 locating 
on chromosome 27. It could act as a sponge to relieve the 
inhibiting effects of miR-133a on serum response factor 
(SRF), which was essential for muscle growth. [70, 81].

CircLMO7 was the most downregulated circRNA between 
embryonic and adult bovine skeletal muscles, which 
located on chromosome12. Overexpressing circLMO7 
and miR-378a-3p through vectors and mimics verified 
that it suppressed myoblasts differentiation and acted as 
a ceRNA sponging miR-378a-3p, mitigating the inhibi-
tion effects of miR-378a-3p on HDAC4 [71], which had 
been illustrated to intervene in bovine muscle development 
previously [82].

CDR1as

CDR1as was reported to have more than 60 conserved 
miR-7 binding sites and function as an miR-7 sponge [5, 
6]. As a well-studied circRNA, CDR1as was confirmed 
to have many biological functions such as influencing 
transcription and secretion of insulin [83], affecting brain 
function [84, 85] and regulating melanoma development 
[86]. Our study found that CDR1as expressed differentially 
in the osteogenesis of PDLSCs [42].CDR1as could act as 
a miR-7 sponge, trigger the upregulation of GDF5 and 
initiate the pSmad1/5/8 and p-p38 MAPK pathway, thus 
promoting osteogenic differentiation of PDLSCs [72].

CDR1as was abundant in mesenchymal stem cells 
derived from human umbilical cord (hucMSCs). CDR1as 
knockdown impaired the ability of hucMSCs to differenti-
ate into adipocytes or osteocytes and downregulated the 
expression of stemness transcription factors [73]. The reg-
ulatory mechanism needed more in-depth study. CDR1as 
was also found to play critical roles in myogenesis as 
promoting myogenesis of skeletal muscle satellite cells. 
Overexpression or knockdown of CDR1as significantly 
induced or impaired muscle differentiation, respectively. 
By competitively binding to miR-7, CDR1as relieved its 
downregulation of IGF1R (insulin like growth factor 1 
receptor),which activated myogenesis [87]. Moreover, this 
study also found MyoD (myogenic differentiation protein 
1), a driven transcription factor for myogenesis [88], pro-
moted transcription of CDR1as by binding on its 5′ flank 
region.[75].

Contrary to the above three, CDR1as inhibited the oste-
ogenesis and promoted adipogenesis of bone marrow mes-
enchymal stem cells from patients with steroid-induced 
osteonecrosis of the femoral head (SONFH-BMSCs). 
CDR1as could bind to miR-7-5p, increase WNT5B expres-
sion and inhibit β-catenin [74]. low-expression β-catenin 
could promote the expression of peroxisome proliferator-
activated receptor (PPARγ), thereby promoting adipogen-
esis of BMSCs [89]and inhibiting osteogenesis of MC3T3-
E1 cells [90]. This study provided a better understanding 
of the molecular mechanism of osteogenesis/adipogenesis 
disorders in SONFH-BMSCs.
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Hsa‑circ33287

Hsa-circ-33287 was the mostly increased circRNAs dur-
ing osteogenesis of BMP2-induced maxillary sinus mem-
brane stem cells (MSMSCs). Circ33287 promoted the 
osteogenic differentiation of MSMSCs by competitively 
binding miR-214-3p and thereby increased its target gene 
Runx3 expression. Runx3 could influence the expression 
of BMP9-induced osteogenic transcription factor and 
phosphorylation of smad1/5/8 [91]. Moreover, transplant-
ing MSMSCs subcutaneously in mice exhibited that cir-
cRNA-33287 facilitated ectopic bone formation in vivo, 
while miR-214-3p suppressed that [40].

CircIGSF11

Zhang et  al. discovered that circIGSF11(hsa-cir-
cRNA13685) could inhibit osteogenic differentiation of 
human BMSCs as a sponge of miR-199b-5p [38]. They 
carried out knockdown trials of circIGSF11 owing to its 
high abundance and overexpression of miR-199b-5p in 
view of its important role as enhancing osteogenic differ-
entiation of BMSCs via modulating the GSK-3β signaling 
pathway [92]. Experiment results showed silence of cir-
cIGSF11 and overexpression of miR-199b-5p facilitated 
osteogenesis.

Others

There are several circRNAs involved in the differentiation 
of stem cells needing function validations and mechanism 
researches. CircBANP and circITCH were differentially 
expressed in the osteogenesis of PDLSCs. Bioinformatic 
analysis predicted circBANP and circITCH might bind 
to miRNA34a and miRNA146, respectively, and regulate 
osteogenesis through MAPK pathway [41]. Wang et al. 
researched stress‐responsive circRNAs in PDLSCs and 
selected several representative circRNAs which might reg-
ulate miRNA-mediated osteogenesis of PDLSCs [29]. For 
example, circRNA5331 was detected to be in a high corre-
lation with miR‐204, which was elucidated to suppress the 
osteogenesis of mesenchymal progenitor cells by negatively 
regulating RUNX2 [93].

CircRNAs modulate proliferation and apoptosis 
in stem cells

Stem cells’ ability of proliferation has close relationship with 
tissue regeneration [94]. So, it is important to understand the 
gene regulation in the proliferation and apoptosis of stem 
cells. We summarized circRNAs involved in proliferation 
and apoptosis of stem cells (Table 4). Firstly, we concluded 
circRNAs in myoblasts. CircZNF609 was characterized to 
modulate proliferation as knockdown of it in human myo-
blasts decreased proliferation markers like CDK1 and cyc-
lin A2 [20]. Similar effects were observed in circZfp609 

Table 4  CircRNAs modulating the proliferation and apoptosis of stem cells

BMSCs bone marrow stem cell, PDLSCs periodontal ligament stem cells, HucMSCs mesenchymal stem cells derived from human umbilical 
cord, HSCs hematopoietic stem cells, Cia-cGAS circRNA antagonist for cGAS, cGAS cyclic GMP-AMP synthase

Cell type species CircRNAs Functions Mechanisms References

Myoblasts Homo sapiens CircZNF609 Promote proliferation Unknown [20]
Mus musculus CircZfp609 Promote proliferation Unknown [66]
Gallus gallus CircFGFR2 Promote proliferation Sponge miR-133a-5p and miR-29b-

1-5p
[68]

Gallus gallus CircSVIL Promote proliferation Unknown [67]
Bos taurus CircFUT10 Inhibit proliferation and promote 

apoptosis
Sponge miR-133a [70]

Bos taurus CircLMO7 Promote proliferation and inhibit 
apoptosis

Sponge miR-378a-3p [71]

Bos taurus CircFGFR4 Promote apoptosis Spong miR-107 [69]
BMSCs Mus musculus Mmu-circ-003795 Promote proliferation Sponge mmu-miR-504-3p [45]

Mus musculus Circ014511 Inhibit apoptosis Sponge mmu-miR-29b-2-5p [96]
PDLSCs Homo sapiens CDR1as Promote proliferation Sponge miR-7 [97]
HucMSCs Homo sapiens CDR1as Promote proliferation and inhibit 

apoptosis
Unknown [73]

HSCs Mus musculus Cia-cGAS Inhibit proliferation Sponge cGAS [48]
MC3T3-E1 cells Mus musculus CircAFF4 Promote proliferation and inhibit 

apoptosis
Sponge miR-7223-5p [98]
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in mouse myoblasts [66]. CircFGFR2 and circSVIL were 
unlocked to promote the proliferation of chicken myoblasts 
[67, 68]. CircFGFR2 relieved the inhibition effects of miR-
133a-5p and miR-29b-1-5p on proliferation as a miRNA 
decoy. However, the downstream reaction of these two miR-
NAs remained to be explored. Mechanisms of circSVIL on 
proliferation were unknown, but overexpression of it could 
result in more cells of S and G2/M phase and fewer of G0/
G1, while knockdown of circSVIL exhibited inverse effects. 
CircFUT10 inhibited bovine myoblasts’ proliferation and 
promoted apoptosis via binding to miR-133a and increas-
ing SRF [70]. MiR-133 promoted myoblast proliferation by 
targeting SRF which is crucial for the growth of skeletal 
muscle [81, 95]. The authors speculated a regulation axis 
of circFUT10-miR-133a- SRF in muscle development. Like 
circFUT10, circFGFR4 accelerated bovine myoblasts apop-
tosis through sponging miR-107 and relieved its effects on 
Wnt3a [69]. CircLMO7 promoted the proliferation of bovine 
myoblasts and protected them from apoptosis through 
sponging miR-378a-3p.

Secondly, there are several circRNAs related to the pro-
liferation and apoptosis of MSCs. CircRNA-014511 is an 
exonic circRNA located on chr4: 132656692-132673032 and 
was demonstrated to suppress apoptosis in mouse BMSCs 
receiving irradiation. A noteworthy downregulation of p53 
and upregulation of anti-apoptosis factors Bcl-2 and Mcl-1 
was observed and triggered by circ014511 through binding 
to mmu-miR-29b-2-5p [96]. MiR-29 family was believed to 
stimulate p53 expression and initiate the p53-mediated apop-
tosis in BMSCs [99]. In addition, p53 could suppress the 
transcription of Bcl-2 and induce G1 phase arrest in human 
non-small cell lung cancer cell lines cells after radiation 
[100]. Overexpressing circ014511 resulted in not G1 phase 
arrest but also G2 phase arrest in radiated cells. Circ014511 
also changed the expression mode of other cell cycle-related 
proteins, like P21, GADD45A and Cyclin B1, and finally 
gave rise to radiation resistance in BMSCs [96]. Circ014511 
held potential for becoming a novel target to protect and 
repair radiation damage in patients. More in vivo research 
should be carried out about this circRNA. Calcitonin gene-
related peptide (CGRP) was demonstrated to enhance mouse 
BMSCs proliferation by upregulating mmu-circ-003795, 
which sponged mmu-miR-504-3p and released its target 
gene FOS like 2 AP-1 transcription factor subunit (FOLS2) 
[45]. FOLS2 and CGRP were both previously described to 
be associated with regulation of cell proliferation and dif-
ferentiation [101, 102]. CDR1as was found to promote pro-
liferation and inhibit apoptosis of HucMSCs with unknown 
mechanisms [73]. It also promoted the proliferation of 
PDLSCs under a lipopolysaccharide (LPS)-induced inflam-
matory condition via activating the ERK signal pathway as 
miR-7 sponge [97]. LPS contributed greatly to periodontitis 
[103]. The role of CDR1as in the proliferation of PDLSCs 

might provide a therapy clue in regenerating teeth and tissue 
damaged by periodontitis.

Finally, we picked up two circRNAs in MC3T3-E1 cells 
and HSCs. PIK3R1 activates downstream AKT by promot-
ing the transformation of 4,5 phosphatidylinositol (4, 5)-bis-
phosphate (PIP2) to 3,4,5 phosphatidylinositol (3, 4,5)-tri-
sphosphate (PIP3) [104]. Previous studies have shown that 
cell survival needs activation of the PI3K/AKT pathway 
[105, 106]. CircAFF4 could bind to miR-7223-5p to remove 
its inhibition of the downstream gene PIK3R. PIK3R1 could 
promote the proliferation of MC3T3-E1 cells and inhibit 
their apoptosis [98]. Mouse femoral fracture model con-
firmed that CircAFF4 promoted bone repair in vivo. This 
study provided a potential therapeutic target for the circR-
NAAFF4/ mir-7223-5p/PIK3R1 axis of action for fracture 
healing.

Long-term hematopoietic stem cells (LT-HSCs) were 
defined to possess the capacity of self-renewal and dif-
ferentiation as an incessant supply of blood cells [107]. 
Cyclic GMP-AMP synthase (cGAS) was considered as 
a cytosolic DNA sensor and it could elicit production of 
cyclic GMP-AMP (cGAMP) upon binding DNA including 
self-originated DNA. CGAMP then activated the adaptor 
STING and catalyzed the synthesis of type I IFNs, driving 
HSCs into cycling and leading to HSC exhaustion [108]. 
CircRNA antagonist for cGAS (Cia-cGAS), originating 
from D430042O09Rik gene transcripts, was proved to bind 
nuclear cGAS and function as a cGAS sponge to prevent its 
combination with self-DNA with a stronger binding capac-
ity. Cia-cGAS silenced original effects of cGAS and pro-
tected resting LT-HSCs from cGAS-mediated exhaustion 
[48]. Moreover, it was elucidated that the deficiency of the 
exonuclease TREX1 in human was linked to several autoim-
mune and inflammatory diseases [109]. Trex1-deficient mice 
caused raised expression of IFN-stimulated genes and cGAS 
deletion was recently reported to result in an elimination of 
pathological and molecular phenotypes in Trex1−/−mice 
[110]. This article also pointed out that overexpression of 
cia-cGAS in Trex1−/− bone marrow-derived macrophages 
could decrease IFN expression, implying cia-cGAS’s sup-
pression on the autoimmune signaling in Trex1-deficient 
cells. Consequently, cia-cGAS might be applied in therapy 
of hematopoietic malignancies or autoimmune diseases.

CircRNAs participate in the ‘cross‑talk’ between stem 
cells and lymphocytes

Stem cells play a role in regenerative medicine in the form 
of being placed into a foreign tissue environment. So it is 
very important to study the interplay between stem cells 
and their microenvironment which maintains and regulates 
them [111].
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Lgr5 + ISCs are a subset of ISCs expressing the G-protein 
coupled receptor Lgr5 as a specific marker and are detected 
to own the talent of long-term self-renewal and producing 
all epithelial cell types [112]. Innate lymphoid cells (ILCs) 
reside in the intestine niche and maintain local homeostasis 
through immune responses [113]. Published work showed 
that ILC2s (type 2 innate lymphoid cells) could secret IL-13 
cytokine and IL-13 had many biological functions [114]. 
CircPan3 originated from the Pan3 gene transcript was 
unveiled to be abundant in both mouse and human Lgr5 
+ ISCs and regulate the stemness of ISCs [63]. CircPan3 
bound to IL-13 receptor subunit (Il13rα1) mRNA in  Lgr5P+ 
ISCs to facilitate its steadiness via competing with Ksrp, 
an RNA binding protein involved in mRNA decay [115]. 
Hence, circPan3 elevated expression of IL-13Rα1 on these 
cells. Subsequently, ILC2s secreted IL-13 to combine with 
IL-13Rα1 and activated STAT6 signaling, which further 
initiated the transcription factor FoxP1 and promoted the 
maintenance of ISCs.

MSCs suppressed the proliferation of T lymphocytes 
[116]. Psoriasis was an autoimmune skin disease [117]. 
Skin mesenchymal stem cells (sMSCs) in psoriatic lesions 
had weaker inhibition on T- cell proliferation [118]. Liu 
et al. analyzed RNA samples from normal skin and psoria-
sis lesions and then discovered that a circRNA located on 
gene chr2:206992521-206994966 was relevant to both pso-
riasis-related miRNAs and genes. Co-cultured experiments 
showed that T cells co-cultured with psoriatic sMSCs and 
chr2:206992521-206994966 knockdown sMSCs had alike 
proliferation activities which were more dynamic than those 
co-cultured with normal sMSCs, speculating that this cir-
cRNA participated in the pathogenesis of psoriasis through 
reducing sMSCs’ ability to suppress T-cell proliferation. 
The pattern of cytokine secretion was also analyzed and 
it was found that knockdown sMSCs and psoriatic lesion-
derived sMSCs had the similar mode: IL-11 secretion was 
elevated; IL-6 and hepatocyte growth factor were decreased 
in comparison with non-transfected normal SMSCs. Those 
are inflammation and immunomodulation-related cytokines, 
suggesting that this circRNA affected on cytokine secretion 
in sMSCs [55].

CircRNAs and cancer stem cells

Cancer stem cells are tumor cells exhibiting characteristics 
of stem cells such as self-renewal and differentiation capaci-
ties. These properties have been proposed to be responsi-
ble for the maintenance and the growth of tumors [119]. In 
1994, Dick et al. isolated leukemia stem cells for the first 
time [120]. Following this landmark research, cancer stem 
cells were discovered in a variety of solid tumors [121–123]. 

Several researches gained insights into circRNAs regulating 
cancer stem cells.

CircZKSCAN1 was reported to suppress stemness of 
hepatocellular carcinoma cells (HCCs) through competi-
tively binding to the RBP, fragile X mental retardation pro-
tein (FMRP). FMRP upregulated stemness in HCC cells by 
binding to cell cycle and apoptosis regulator 1 (CCAR1) 
mRNA and regulated its expression. CCAR1 was a co-
activator of the Wnt/β-catenin signaling pathway [124] 
and was positively correlated with cell stemness in HCC 
through upregulating levels of active β-catenin. Absence 
of circZKSCAN1 was also proved to be related to worse 
prognosis, providing great clinical diagnostic and therapeu-
tic potentials [125]. CircMALAT1 was highly expressed in 
HCCs from clinical hepatocellular carcinoma samples and 
was able to promote self‐renewal of HCCs. CircMALAT1 
performed this function not only by sponging miRNA but 
also by retarding mRNA translation like a brake, showing 
a dual‐faceted pattern of circRNA‐mediated post‐transcrip-
tional regulation of maintaining a specific cell state [126].
CircVRK1 was downregulated in breast cancer stem cells 
(BCSCs) compared to non-BSCSs and was able to inhibit 
the stemness of BCSCs. Bioinformatics analysis indicated 
that circVRK1 might regulate BCSCs through binding to 
miR-153, which needed more researches [127]. CircRNA 
hg19_circ_0005033 promoted proliferation, migration, inva-
sion, and chemotherapy resistance of laryngeal cancer stem 
cells, proving clues for laryngeal squamous cell carcinoma 
therapy [128].

Conclusion and perspectives

In this review, we firstly discussed the general character-
istics of circRNAs in the differentiation of stem cells and 
discovered that several circRNAs such as circFOXP1 could 
serve as stem cell biomarkers. Stemness and differentia-
tion capacity are important characteristics of stem cells. 
We discussed two circRNAs which maintained stem cells 
pluripotency and participated in stem cells reprogramming: 
circFOXP1 and circBIRC6. Cell reprogramming is the abil-
ity to change a cell’s fate to another one. Stem cell repro-
gramming can turn differentiated somatic cells into stem 
cells. Hence, circFOXP1 and CircBIRC6 might contribute 
to regenerative medicine via helping generate stem cells into 
clinical use. We then summarized key circRNAs involved 
in differentiation, proliferation and apoptosis of stem cells. 
CDR1as was proved to regulate adipogenesis, osteogenesis 
and myogenesis of multiple stem cells. It also intervened 
proliferation and apoptosis of stem cells. Therefore, CDR1as 
played a vital role in stem cells and might be a promising 
target of stem cell therapies. We also referred to two cir-
cRNAs involved in the ‘cross-talk’ between stem cells and 
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lymphocyte: circpan3 and circ2:206992521-206994966. 
Lymphokines are an important part of microenvironment 
and have been proved to regulate stemness of stem cells 
[129, 130]. Researches on the relationship between stem 
cells and immune cells deepened our understanding of stem 
cells self-renewal and autoimmune diseases.

CircRNAs have been shown to act as miRNA sponges, 
gene transcription regulators, protein translators, protein 
decoys or scaffolds and so on. Up to now, circRNAs’ func-
tion as miRNA sponge has received the most attention\, we 
look forward to more regulation mechanisms of circRNAs 
in stem cells. Besides, the upstream mechanism of circR-
NAs remains largely unclear. Factors regulating circRNAs 
expression in stem cells leave too much to be desired. Fur-
thermore, there are several circRNAs in the text with func-
tion prediction but short of deeper mechanism researches. 
For instance, CDR1as promoted proliferation and inhibited 
apoptosis of hucMSCs. However, how it worked still needed 
to be explored [73]. There is no standard nomenclature of 
circRNAs, resulting a chaotic naming phenomenon in this 
manuscript. A comprehensive database called circbank was 
presented recently, implementing an innovative naming sys-
tem for human circRNAs according to their parental genes 
[131]. It will be better if all circRNAs be named according 
to one uniform standard.

The rapid development of gene researches has triggered 
urgent desire of RNA-based therapies such as RNA drugs, 
including short interfering RNAs and antisense oligonu-
cleotides (oligos). The first antisense oligo approved by 
FDA in 1998 was Vitravene, which was intended for treat-
ment of cytomegalovirus (CMV) retinitis patients. Since 
then, several oligos were approved including Macugen, 
Kynamro, Exondys 51, Defitelio, Spinraza [132]. 2018 had 
been extremely important for oligonucleotides with two 
FDA approvals. One was Patisiran, a double strand small 
interfering RNA (siRNA). Another was Inotersen, a single 
stranded 20-mer phosphorothioate antisense oligonucleotide. 
Both were prescribed for the cure of polyneuropathy heredi-
tary transthyretin mediated amyloidosis in adults through 
suppression of mRNA and reduction of TTR protein [133]. 
In view of the abovementioned effects of circRNAs on stem 
cells, it is reasonable to expect the clinical use of circRNAs 
in stem cells associated therapies. Cell-specific circRNAs 
can be used as biomarkers to indicate the differentiation sta-
tus of stem cells and distinguish them from differentiated 
cells. Tissue and disease-specific circRNAs can be explored 
for preclinical prediction of diseases or judging prognosis. 
Moreover, circRNAs may serve as therapeutic targets of dis-
eases, or be used in tissue engineering together with stem 
cells or biomaterials in later clinical stages. For example, 
circNfix was demonstrated to weaken the cardiac regenera-
tion regulated by super enhancer, providing a new thera-
peutic target of myocardial infarction [134]. In the future, 

researchers might explore the role of more circRNAs in the 
molecular regulatory network deeply, and apply more in vivo 
research to verify circRNAs’ effects on stem cells, laying a 
foundation for transforming scientific research achievements 
into clinical application.
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