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Abstract
Objectives It is with a great prospect to develop an auxiliary diagnosis system for dental periapical radiographs based on 
deep convolutional neural networks (CNNs), and the indications and performances should be investigated. The aim of this 
study is to train CNNs for lesion detections on dental periapical radiographs, to evaluate performances across disease cat-
egories, severity levels, and train strategies.
Methods Deep CNNs with region proposal techniques were constructed for disease detections on clinical dental periapical 
radiographs, including decay, periapical periodontitis, and periodontitis, leveled as mild, moderate, and severe. Four strate-
gies were carried out to train corresponding networks with all disease and level categories (baseline), all disease categories 
(Net A), each disease category (Net B), and each level category (Net C) and validated by a fivefold cross-validation method 
afterward. Metrics, including intersection over union (IoU), precision, recall, and average precision (AP), were compared 
across diseases, severity levels, and train strategies by analysis of variance.
Results Lesions were detected with precision and recall generally between 0.5 and 0.6 on each kind of disease. The influ-
ence of train strategy, disease category, and severity level were all statistically significant on performances (P < .001). Decay 
and periapical periodontitis lesions were detected with precision, recall, and AP values less than 0.25 for mild level, while 
0.2–0.3 for moderate level and 0.5–0.6 for severe level. Net A performed similar to baseline (P > 0.05 for IoU, precision, 
and recall), while Net B and Net C performed slightly better than baseline under certain circumstances (P < 0.05), but Net 
C failed to predict mild decay.
Conclusions The deep CNNs are able to detect diseases on clinical dental periapical radiographs. This study reveals that the 
CNNs prefer to detect lesions with severe levels, and it is better to train the CNNs with customized strategy for each disease.
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Introduction

The dental periapical radiography is a kind of radiology 
image that is essential for the diagnosis of dental hard tis-
sue diseases, such as decay, periapical periodontitis, and 
periodontitis [1–3]. Based on the bisecting technique, a 
dental periapical radiography can shape several (usually 
3–4) intact teeth and periodontal structures. However, the 
clarity of the radiography is strongly relied on the opera-
tor’s techniques, including the setting of project angle, 
radiation time, and doses [4]. Dental periapical radio-
graphs are abundantly produced in daily clinical practice 
and read by a dentist to generate diagnosis reports, and 
provide guidance for treatment plans, or evaluate the out-
comes. The reading and analyzing work consumes much 
mental effort and takes a substantial amount of time from 
the dentist, and radiographic interpretations tend to be 
with a variation between observers [3, 5, 6]. Moreover, 
there are misdiagnosis of non-endodontic lesions as peri-
apical periodontitis lesions [7]. So, it is with a great pros-
pect to develop an auxiliary diagnosis system for dental 
periapical radiographs.

There are kinds of algorithms applied in dental X-ray 
image processing, feature extraction, and segmentation, 
such as contour extraction [8, 9], adaptive threshold 
[10–12], iterative thresholding [13], level set [14, 15], 
mathematical morphology [16], Fourier descriptors [17], 
hierarchical contour matching [18], weighted Hausdorff 
distance [19], texture statistics techniques [20], local sin-
gularity analysis [21], semi-supervised fuzzy clustering 
algorithms [22, 23], neutrosophic orthogonal matrices 
[24], and so on. However, image features of target objects 
were always shallowly extracted in these algorithms and 
rely heavily upon manual definitions, which may raise 
issues of artificial errors.

With the development of artificial intelligence tech-
niques, support vector machine (SVM) [25] and artificial 
neural networks [26–29] were introduced to detect lesions 
on dental images, which achieved better results compared 
to “rule-based” computer algorithms. Li et al. [25] used 
principal component analysis to extract pathological char-
acteristics of the clinical images to train a SVM classifier, 
achieving automatic and fast clinical segmentations. Yu 
et al. [26] proposed a three-layer neural network in which 
normalized autocorrelation coefficients were treated as 
input features, and back-propagation algorithm was used 
to construct the weights of classifier to distinguish decayed 
teeth from normal. El-Bakry et al. [27] trained a neural 
network to classify sub-images which contain dental dis-
eases or not and constructed a fast algorithm for dental dis-
ease detection by performing cross-correlation in the fre-
quency domain between input image and the input weights 

of the neural networks. Tumbelaka et al. [28] used local 
image differentiation technique to extract edges as basis 
image features and then analyzed them by texture descrip-
tors to obtain image entropy, which was further sent to 
artificial neural networks to detect the infected regions. 
However, in these researches, image features should be 
manually defined and pre-calculated before sent to classi-
fiers like SVM or neural networks.

In recent years, deep convolution neural networks (CNNs) 
have been invented which can take the raw image data as 
input and did a good job on image classifications and object 
detections [30]. Srivastava et al. [29] constructed a deep 
fully convolutional neural network to mark caries on bite-
wing radiographs with precision reported to be 61.5 and 
recall 81.5. Al Kheraif et al. [31] performed teeth and bone 
segmentation work on panoramic radiographs using hybrid 
graph-cut technique and convolutional neural network. Lee 
et al. [32] implemented decay classification based on Goog-
LeNet Inception v3 CNN network, while the teeth for detec-
tion should be manually segmented before sent to neural 
networks, and the position of decay lesions was not precisely 
located in their research. Ekert et al. [33] applied deep con-
volutional neural networks (CNNs) to detect apical lesions 
on panoramic dental radiographs, but the CNN’s sensitiv-
ity needs to be improved before clinical application. Lately, 
regions with convolutional neural network (R-CNN) features 
[34] were developed to offer solutions for object detection 
tasks, where target objects (regions of interest) were auto-
matically boxed out and annotated with labels. R-CNN was 
then upgraded to fast R-CNN [35] and furtherly to faster 
R-CNN [36], with higher efficiency and better performances. 
Although some researchers reported teeth segmentations on 
panoramic dental radiographs based on faster R-CNN [37], 
there were rarely researches applying R-CNNs in disease 
lesion detection on dental periapical radiographs.

In this research, faster R-CNN was utilized to detect 
decay, periapical periodontitis, and periodontitis in dental 
periapical radiographs. Influences of network train strate-
gies, as well as disease categories and levels of severity, 
on the detection outcomes were invested, with intentions to 
figure out to what extent the faster R-CNN will perform in 
disease detection in dental X-ray, and to find out what kind 
of diseases and which levels will be detected with higher 
accuracy, i.e., the indications of this deep CNN auxiliary 
diagnosis methods.

Methods

Data collection and annotation

In total, 2900 digital dental periapical radiographs 
were collected. The inclusion criteria are (1) periapical 
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radiographs with permanent teeth, (2) the radiation expo-
sure is proper, and (3) the position and axial direction of 
teeth are proper. The exclusion criteria are (1) radiographs 
with deciduous teeth in it, (2) the image is too bright or 
too dark to distinguish the lesions, and (3) the teeth in the 
image is severely distorted. Each digital radiography was 
exported with a resolution of 96 dpi at size of approxi-
mately (300–500) × (300–400) pixels and saved as a “JPG” 
format image file with a unique identification code. These 
image files were collected anonymously to ensure that no 
private information, such as patient name, gender, or age, 
is revealed. Afterward, an expert dentist with more than 
5 years of clinical experience draws minimum bounding 
boxes to frame each diseased area of decay, periapical 
periodontitis (labeled as periapi, for short), and periodon-
titis with bone resorptions (labeled as periodo, for short). 
Each type of disease was graded by three levels of sever-
ity, which are mild, moderate, and severe. Thus, a total 
of nine label names for bounding boxes were annotated: 
decay-mild, decay-moderate, decay-severe, periapi-mild, 
periapi-moderate, periapi-severe, periodo-mild, periodo-
moderate, and periodo-severe. The criteria are as follows:

Decay-mild: the decay invasion depth less than 1/3 of the 
tooth sidewall or roof width;
Decay-moderate: the decay invasion depth between 1/3 
and 1/2 of the tooth sidewall or roof width.
Decay-severe: the decay invasion depth larger than 1/2 of 
the tooth sidewall or roof width;
Periapi-mild: the width of the periapical periodontitis 
area (the miner axis) less than 1 mm;
Periapi-moderate: the width of the periapical periodonti-
tis area (the miner axis) between 1 and 3 mm;

Periapi-severe: the width of the periapical periodontitis 
area (the minor axis) larger than 3 mm;
Periodo-mild: the bone resorption depth less than 1/3 of 
the tooth root length;
Periodo-moderate: the bone resorption depth between 1/3 
and 1/2 of the tooth root length;
Periodo-severe: the bone resorption depth larger than 1/2 
of the tooth root length;

The coordinates of points in the image were set as pixel 
distance from image’s left top corner, where the tooth 
bounding box could be recorded by its top left and bottom 
right corner points (xmin, ymin, and xmax, ymax).

Train and validation of faster R‑CNNs

An object detection tool package [38] based on TensorFlow 
was utilized to construct faster R-CNN, which was one of the 
state-of-the-art object detectors for multiple categories. The 
training process was executed on a GPU (Quadro RTX 8000, 
NVIDIA, USA), with 48 GB memory and 4608 CUDA 
cores. The algorithms were running backend on TensorFlow 
version 1.13.1, and the operating system was Ubuntu 18.04. 
The training parameters were configured as: anchor scales 
[0.1, 0.2, 0.4, 0.8, 1.6], iterations 100,000, initial learning 
rate 0.003 and then reduced to 0.0003 after 30,000 iterations, 
and further to 0.00003 after 60,000 iterations. Also, a pre-
trained model on the Coco dataset, version 2018-01-28, was 
loaded as a fine-tune checkpoint.

Faster R-CNN was trained and validated by several strate-
gies of a different organization of annotated data (Table 1). 
Firstly, all annotated images with nine label names were 
treated as ground truth and were used to train and validate 
the faster R-CNN network as a baseline. Secondly, the level 

Table 1  Train and validation strategies

* bbox, bounding box; GT, ground truth; periapi, periapical periodontitis; periodo, periodontitis
** label names are combinations of names before and after “-”, e.g., label names for “[decay, periapi, periodo]-[mild, moderate, severe]” are: 
“decay-mild,” “decay-moderate,” “decay-severe,” “periapi-mild,” “periapi-moderate,” “periapi-severe,” “periodo-mild,” “periodo-moderate,” 
“periodo-severe”

Strategy Trained network Objects included Class names** Image count GT* 
bbox* 
count

All (diseases and levels) Baseline All [decay, periapi, periodo]-[mild, mod-
erate, severe]

2900 7665

Ignore levels Net A All decay, periapi, periodo 2900 7665
Mono-disease Net B1 decay decay-[mild, moderate, severe] 1097 1486

Net B2 periapi* periapi-[mild, moderate, severe] 844 1090
Net B3 periodo* periodo-[mild, moderate, severe] 2232 5089

Mono-level Net C1 Mild [decay, periapi, periodo]-mild 2003 3484
Net C2 Moderate [decay, periapi, periodo]-moderate 1288 2024
Net C3 Severe [decay, periapi, periodo]-severe 1344 2157
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attribution of each bounding box (bbox) annotations was 
ignored, that is, decay-mild, decay-moderate, and decay-
severe were all relabeled to be decay, same to periapi and 
periodo, to train and validate another fast R-CNN named Net 
A. After that, three faster R-CNNs (named Net B1, B2, and 
B3), one for each of the three disease name classifications, 
were trained, respectively. Similarly, C1, C2, and C3 were 
trained for each level of bboxes. Fivefold cross-validation 
was applied for every network listed in Table 1, where all 
included images were randomly and evenly divided to be 
five parts. The train and validation processes were run for 
five turns with every part used as validation dataset, and the 
rest four parts as train dataset. Before each run, the trained 
parameters were initialized or re-initialized to “forget” the 
trained memories and the networks were “renewed.”

Several metrics were calculated on validation dataset for 
each label name, including intersection over union (IoU), 
precision, recall, average precision (AP, also equal to area 
under curve, AUC). Metrics calculated from the fivefold 
cross-validation procedure were combined to calculate a 
mean value.

Firstly, the predicted bboxes were compared with ground 
truth bboxes, and IoU is defined as:

where Areapred and Areagt represent the areas of the predicted 
bbox and its corresponding ground truth bbox. The threshold 
of IoU was set to be 0.5, that is, if a predicted bbox whose 
IoU with corresponding ground truth bbox is larger than 0.5, 
it will be treated as true positive bboxes. Then precision and 
recall could be calculated:

where TP represents the count of true positive bboxes, while 
Pred is the count of predicted bboxes and GT is the count 
of ground truth bboxes. It can be easily inferred that preci-
sion defined here is equivalent to positive predictive value 
in clinical diagnosis, and recall is equivalent to sensitivity.

Receiver operating characteristic (ROC) curve is an 
important metric to evaluate diagnosis tools. However, the 
calculation of ROC curves relies on counts of true positive 
samples, true negative samples, false positive samples, and 
false negative samples. But negative samples are not appli-
cable here in this kind of object detection tasks, because 
no bonding box has been drawn on negative targets (areas 
without disease lesions) by ground truth. Thus, ROC curves 
cannot be drawn. Instead, we calculated precision–recall 

(1)IOU =
Areapred

⋂

Areagt

Areapred
⋃

Areagt

(2)Precision =
TP

Pred

(3)Recall =
TP

GT

curves in this study, which have deep connection with 
receiver operator characteristic curves; both can evaluate 
the accordance between test and reference [40]. The area 
under precision–recall curve was calculated as average pre-
cision (AP), which is widely used as an important metric of 
the performances of networks in object detection tasks. For 
each label name, the bboxes were predicted by faster R-CNN 
with confidence scores. A threshold of confidence score will 
be set to decide which of the predicted bboxes to finally 
output. If the confidence score of one predicted bbox was 
set as threshold, predicted bboxes whose confidence scores 
larger than the threshold will be finally output and matched 
with ground truth bboxes to produce a precision and a recall 
value. After every confidence score of predicted bboxes set 
as threshold, a series of precision and recall value pairs will 
be produced to draw a P–R curve. Thus, average precision 
(AP) [39] is defined as the area under smoothed P–R curve:

where pinterp(r) is the maximum precision for any recall val-
ues exceeding r:

Statistical analysis

To evaluate the performance of each network on diseases 
and levels, analysis of variance (ANOVA) was used. Firstly, 
the performances of baseline were compared with Net A 
across all three diseases. Since there was no level attribu-
tion of bboxes output from Net A, the level attributions of 
predicted bboxes by baseline were ignored for comparison, 
that is, decay-mild, decay-moderate, and decay-severe were 
all treated as decay, also to periapi and periodo. Two-way 
ANOVA was applied with strategy names and disease 
names set as independent variables, and metrics calculated 
on validation dataset including IoU, precision, recall, and 
AP were set as dependent variables. Secondly, the perfor-
mances of baseline were compared with Net B (composed 
of B1, B2, B3) and Net C (composed of C1, C2, C3). Multi-
way ANOVA was applied, where strategy names, disease 
names, and level names were set as independent variables, 
and metrics calculated on validation dataset including IoU, 
precision, recall, and AP were set as dependent variables.

A statistical software program (IBM SPSS Statistics, 
v19.0; IBM Corp) was used for the statistical analysis. For 
those where the interactions of independent variables were 
significant, simple effects were analyzed with pairwise com-
parisons adjusted by the Bonferroni’s method (α = 0.05 for 
all tests).

(4)AP =
∑

(rn+1 − rn)pinterp(rn+1)

(5)pinterp
(

rn+1
)

= max
∼
r≥rn+1

p(
∼
r).
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Results

As shown in Fig. 1, although with some miss diagnosis, the 
diseases detected by faster R-CNNs were basically close to 
the ground truth. Performances of baseline and Net A were 

compared, and the metrics calculated on validation dataset 
are shown in Table 2. Two-way ANOVA results (Table 3) 
have shown that the strategy had no significant influence 
on all metrics, except AP, while the disease had a signifi-
cant influence on all metrics. The interaction of strategy 
and disease had no significant influence on all metrics, 

Ground 
Truth

Baseline

Net A

Net B

Net C

Fig. 1  Samples of dental periapical radiographs with lesions detected 
by networks constructed and trained in this research. Ground truth 
was manual annotations of an expert dentist. The detections shown in 
baseline were output from neural network trained by all disease cat-
egories and all severity levels. The detections shown in Net A were 
output from neural network trained by all disease categories, ignor-
ing severity levels. The detections shown in Net B were combination 

of detections from Net B1, Net B2, and Net B3, where decays were 
detected by Net B1, periapical periodontitis was detected by Net B2, 
and periodontitis was detected by Net B3. The detections shown in 
Net C were combination of detections from Net C1, Net C2, and Net 
C3, where mild-level diseases were detected by Net C1, moderate-
level diseases were detected by Net C2, and severe-level diseases 
were detected by Net C3
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except precision. Non-statistically significant interactions 
were removed from the analysis model, and F values as 
well as P values were re-estimated and shown in brackets. 
Otherwise, if interactions between factors were significant, 
simple effects were analyzed based on estimated marginal 
means. Factors with significant influence on according 
metrics were forwarded to pairwise comparisons adjusted 
by the Bonferroni’s method. Values of metrics and results 
of pairwise comparisons are illustrated in Fig. 2, where 
values with significant differences were annotated by dif-
ferent letters. As it can be seen, with comparison between 
different diseases, decay tends to be predicted with higher 
IoU, precision, and AP than periapi or periodo, while peri-
odo tends to be predicted with higher recall (Fig. 2a). With 
comparison between different strategies (networks), Net A 
performed as good as baseline and even slightly better than 
baseline on AP value for prediction of periapi (Fig. 2b).

Performances of baseline and Net B, C were also com-
pared, and the metrics calculated on validation dataset are 
shown in Table 4. Multi-way ANOVA results (Table 5) show 
that all independent variables, as well as their interactions, 
had significant influences on all metrics. Simple effects were 
analyzed, and further pairwise comparisons were processed 
based on estimated marginal means and adjusted by the 
Bonferroni’s method. The values of metrics and the results 
of pairwise comparisons are illustrated in Fig. 3, 4, 5. As 
it can be seen, with comparison between different diseases 
on severe level, decay tends to be predicted with precision, 

recall, and AP values higher than periapi, and periapi tends 
to be higher than periodo, but the order was reversed on 
mild and moderate levels (Fig. 3). Mild decay tended to be 
predicted with lower IoU than mild periapi and mild periodo 
(Fig. 3). With comparison between different Levels, severe 
level tended to be predicted with precision, recall, and AP 
values higher than moderate level, and moderate level tended 
to be higher than mild level, particularly for decay and peri-
api (Fig. 4). With comparison between different strategies 
(networks), Net B and Net C performed better than baseline 
on certain circumstances, but Net C failed to predict mild 
decay (Fig. 5).

Discussion

Metrics included in this research have their clinical signifi-
cances. As in clinical use, the overlapping rate between pre-
dicted disease areas and ground truth must reach a certain 
level that is beneficial for the dentist to position the potential 
disease. The IoU, which is defined as an overlapping area 
over the union area, can measure the precision of alloca-
tion of target diseases. The larger the IoU is, the more pre-
cise the location of target disease, and predicted target will 
completely overlap with target disease when IoU reaches 1. 
The IoU is always high. However, high IoU is not directly 
related to the diagnostic performance to predict either the 
presence/absence or severity of target diseases. Precision 

Table 2  Metrics calculated for baseline and Net A on validation dataset by fivefold cross-validation method (mean ± SD)

* Count of ground truth lesions

Strategy Network Disease GT* N IoU Precision Recall AP

All Baseline decay 1486 5 0.7159 ± 0.0062 0.6193 ± 0.0391 0.5439 ± 0.0396 0.4572 ± 0.0302
All Baseline periapi 1090 5 0.6942 ± 0.0113 0.5161 ± 0.0294 0.5180 ± 0.0257 0.3625 ± 0.0293
All Baseline periodo 5089 5 0.6835 ± 0.0039 0.5644 ± 0.0203 0.6152 ± 0.0297 0.4373 ± 0.0304
Ignore level Net A decay 1486 5 0.7113 ± 0.0058 0.5838 ± 0.0299 0.5608 ± 0.0387 0.4683 ± 0.0470
Ignore level Net A periapi 1090 5 0.6974 ± 0.0155 0.5508 ± 0.0164 0.5353 ± 0.0255 0.4284 ± 0.0285
ignore level Net A periodo 5089 5 0.6801 ± 0.0062 0.5704 ± 0.0071 0.6129 ± 0.0173 0.4574 ± 0.0231

Table 3  Two-way ANOVA results of comparison of baseline and Net A

*Mean difference significant (P < .05)
(). Values re-estimated after removing non-statistically significant interactions from analysis model

Source df IoU Precision Recall AP

F P F P F P F P

Strategy 1 .234 (.243) .633 (.626) .034 .856 .924 (.974) .346 (.333) 7.532 (6.956) .011 (.014)*
Disease 2 30.684 (31.803) < .001* 

(< .001*)
17.326 < .001* 21.803 (22.973) < .001* 

(< .001*)
11.931 (11.109) < .001* 

(< .001*)
Strategy × Dis-

ease
2 .543 .588 4.654 .020* .338 .716 2.076 .147
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Fig. 2  Metrics calculated for baseline and Net A; values with significant differences were annotated by different letters. a Comparison between 
diseases; b comparison between strategies
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defined in this research is equivalent to positive predictive 
value in clinical diagnosis, and recall is equivalent to sen-
sitivity. Thus, precision here represents the chance that a 
predicted disease bbox truly has the disease within it, and 
recall represents the probability that a prediction will indi-
cate “disease” among those with the disease. AP, which is 

defined as the area under the precision–recall curve, can test 
the overall performances of the network, and the closer the 
AP reaches 1, the better the network model is. What’s more, 
precision–recall curves have a deep connection with receiver 
operating characteristic curves [40], both of which are able 
to evaluate the accordance between test and reference. 

Table 4  Metrics calculated for baseline and Net B, C on validation dataset by fivefold cross-validation method (mean ± SD)

*Count of ground truth lesions

Strategy Network Disease Level GT* N IoU Precision Recall AP

All Baseline decay Mild 113 5 0.5133 ± 0.3093 0.1392 ± 0.1402 0.0685 ± 0.0427 0.0262 ± 0.0223
All Baseline decay Moderate 311 5 0.6702 ± 0.0470 0.2802 ± 0.0338 0.2073 ± 0.0360 0.1092 ± 0.0424
All Baseline decay Severe 1062 5 0.7283 ± 0.0051 0.6307 ± 0.0261 0.6046 ± 0.0432 0.5146 ± 0.0272
All Baseline periapi Mild 279 5 0.6660 ± 0.0270 0.1979 ± 0.0269 0.2319 ± 0.0650 0.0854 ± 0.0290
All Baseline periapi Moderate 378 5 0.6969 ± 0.0207 0.3275 ± 0.0353 0.3151 ± 0.0487 0.1397 ± 0.0258
All Baseline periapi Severe 433 5 0.7117 ± 0.0123 0.5273 ± 0.0674 0.5036 ± 0.0930 0.3629 ± 0.0937
All Baseline periodo Mild 3092 5 0.6831 ± 0.0052 0.4702 ± 0.0181 0.5252 ± 0.0224 0.3303 ± 0.0227
All Baseline periodo Moderate 1335 5 0.6998 ± 0.0083 0.4302 ± 0.0221 0.4655 ± 0.0192 0.2757 ± 0.0111
All Baseline periodo Severe 662 5 0.7024 ± 0.0221 0.5075 ± 0.0227 0.4954 ± 0.0276 0.3661 ± 0.0324
Mono-disease Net B1 decay Mild 113 5 0.6029 ± 0.0291 0.1781 ± 0.0752 0.1276 ± 0.0513 0.0619 ± 0.0504
Mono-disease Net B1 decay Moderate 311 5 0.6594 ± 0.0109 0.2823 ± 0.0435 0.2766 ± 0.0503 0.1295 ± 0.0285
Mono-disease Net B1 decay Severe 1062 5 0.7374 ± 0.0090 0.6975 ± 0.0508 0.7198 ± 0.0259 0.6862 ± 0.0313
Mono-disease Net B2 periapi Mild 279 5 0.6675 ± 0.0181 0.3099 ± 0.0632 0.4049 ± 0.0785 0.2348 ± 0.0642
Mono-disease Net B2 periapi Moderate 378 5 0.6857 ± 0.0101 0.3103 ± 0.0175 0.3858 ± 0.0641 0.2241 ± 0.0488
Mono-disease Net B2 periapi Severe 433 5 0.7224 ± 0.0037 0.5151 ± 0.0968 0.5579 ± 0.0749 0.4755 ± 0.0665
Mono-disease Net B3 periodo Mild 3092 5 0.6834 ± 0.0023 0.4928 ± 0.0213 0.5555 ± 0.0173 0.3921 ± 0.0160
Mono-disease Net B3 periodo Moderate 1335 5 0.7017 ± 0.0032 0.4298 ± 0.0361 0.4731 ± 0.0438 0.2742 ± 0.0503
Mono-disease Net B3 periodo Severe 662 5 0.7023 ± 0.0122 0.4746 ± 0.0426 0.4899 ± 0.0530 0.3501 ± 0.0446
Mono-level Net C1 decay Mild 113 5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Mono-level Net C1 periapi Mild 279 5 0.6710 ± 0.0268 0.2277 ± 0.0615 0.1972 ± 0.0734 0.0735 ± 0.0361
Mono-level Net C1 periodo Mild 3092 5 0.6798 ± 0.0048 0.5161 ± 0.0211 0.5357 ± 0.0113 0.3908 ± 0.0166
Mono-level Net C2 decay Moderate 311 5 0.6618 ± 0.0182 0.3269 ± 0.0598 0.2332 ± 0.0631 0.1431 ± 0.0587
Mono-level Net C2 periapi Moderate 378 5 0.6904 ± 0.0103 0.4124 ± 0.0773 0.3896 ± 0.0587 0.2951 ± 0.0490
Mono-level Net C2 periodo Moderate 1335 5 0.6996 ± 0.0055 0.4718 ± 0.0229 0.5043 ± 0.0266 0.4025 ± 0.0137
Mono-level Net C3 decay Severe 1062 5 0.7292 ± 0.0058 0.6950 ± 0.0439 0.7202 ± 0.0240 0.6889 ± 0.0203
Mono-level Net C3 periapi Severe 433 5 0.7105 ± 0.0094 0.5708 ± 0.0618 0.6227 ± 0.0640 0.5640 ± 0.0666
Mono-level Net C3 periodo Severe 662 5 0.7038 ± 0.0183 0.5381 ± 0.035 0.5511 ± 0.0551 0.4616 ± 0.0768

Table 5  Multi-way ANOVA results of comparison of baseline and Net B, C

*Mean difference significant (P < .05)

Source df IoU Precision Recall AP

F P F P F P F P

Strategy 2 16.106 < .001* 3.155 .047* 17.832 < .001* 50.247 < .001*
Disease 2 42.577 < .001* 67.649 < .001* 145.798 < .001* 66.048 < .001*
Level 2 65.875 < .001* 352.271 < .001* 403.072 < .001* 681.215 < .001*
Strategy × Disease 4 15.562 < .001* 3.188 .016* 4.186 .003* 7.477 < .001*
Strategy × Level 4 15.038 < .001* 7.527 < .001* 11.015 < .001* 17.162 < .001*
Disease × Level 4 40.053 < .001* 101.222 < .001* 154.208 < .001* 173.689 < .001*
Strategy × Disease × Level 8 15.356 < .001* 2.605 .012* 2.044 .048* 4.063 < .001*
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However, when dealing with highly skewed datasets where 
the class distribution is not even, precision–recall (P–R) 
curves give a more informative picture of an algorithm’s 
performance [40]. Precision, recall, and average precision 
did not show high performances, which implied the difficulty 
of correctly detection of dental lesions (Tables 2, 4).

As shown in the results, many values of precision, recall, 
and AP were less than 0.5, which is the random chance of 
two-category classifications. But the disease detection task 
here is not only to classify the multicategory disease lesions, 
but also to detect the actual position and size of the lesion, 
and the performances were the overall accuracy. Think of 
a small target square area like the mild decay in the dental 
radiography image, if determined its position and size ran-
domly, the chance will be very small (about 0) to correctly 
match with the truth (IoU larger than 0.5), let alone the sub-
sequent chance of multicategory classifications. Although 
the overall performance of CNNs has many values less than 
0.5, they are still better than chance.

Different strategies and networks were designed in 
this research, and their influence on metrics was tested. 
Net A was designed to ignore levels for disease detec-
tion, which is reasonable for basic clinical applications, 
because usually we only need to know whether there are 
certain disease lesions or not on dental X-rays, and further 
manual examinations will be processed to determine the 
level of detected diseases. But we still want to figure out 
whether it will improve the recognition of disease names 
for the deep CNNs if we teach machine more details of the 
disease, such as disease levels here. However, the results 
of comparison between Net A and baseline show that, if 
only disease names were wanted (i.e., the levels of disease 
are not needed to output from network), baseline trained 
with extra disease level information performed no better 
than Net A with only disease name information. It can 
be inferred that there is no need to annotate objects with 
extra attributions other than what we need the deep CNNs 
to output.

Fig. 3  Comparison across diseases of metrics calculated for baseline and Net B, C; values with significant differences were annotated by differ-
ent letters
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As in baseline, we trained only one faster R-CNN network 
for all diseases and levels, but in Net B, we trained one faster 
R-CNN for each disease name, and in Net C, we trained one 
faster R-CNN for each level name. Thus, although Net B 
and Net C performed slightly better than baseline in certain 
circumstances, they were three times of baseline in scales 
of model parameters. Other than that, Net C failed to detect 
mild decay, which might because the differences of features 
between diseases within the same level were more obvious 
than differences of features between levels within the same 
disease. So, overall, Net B with trained faster R-CNN for 
each disease name performed better than baseline and Net C, 
but will cause more overheads in computation and memory 
than baseline.

Metrics were also compared among diseases and levels, 
with intention to find out the indications of faster R-CNNs 
in this research. The results turned out that periodontitis can 
be well detected among all levels, while decay and peri-
apical periodontitis were better predicted with an increase 

in severity. Decay and periapical periodontitis with moder-
ate or severe levels were in much larger scales and were 
more visually distinctive than mild level, and the small size 
objects are easy to be ignored after downsampling in faster 
R-CNN processes. Thus, disease lesions with too small sizes 
may not be indications for faster R-CNN. On the other hand, 
the distribution of lesions among different disease categories 
and severity levels is uneven in this study, which could also 
affect the performances of networks. There is also a trend 
of poorer performances with less train samples, because the 
networks need to be trained with enough amount of ground 
truth cases before they can correctly predict disease lesions. 
However, imbalance distribution of lesion counts across dis-
eases and levels is the actual situation in real clinical dental 
radiographs. Thus, when it comes to the clinical applica-
tion, radiographs should better be screened from the clinical 
images to form an evenly distributed train dataset.

The performances of current networks were poorer than 
Srivastava et al. [29] with precision reported to be 61.5 and 

Fig. 4  Comparison across levels of metrics calculated for baseline and Net B, C; values with significant differences were annotated by different 
letters
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recall 81.5 on bitewing images. This might because the 
ground truth used by Srivastava et al. for existence of caries 
was radiographic interpretation by dentists combined with 
clinical verification, and they did not specify the severity 
or size of the carious lesions. Although the performances 
were not sufficient to be used as diagnostic tools alone, it can 
prompt dentist with potential disease lesions, which is ben-
eficial to improve the efficiency of clinical work. Furtherly, 
the structure of deep CNNs should be updated and some pre-
image or post-image processing techniques should be car-
ried out to improve the performances of disease detection on 
dental periapical radiographs, which will be our next work.

Conclusions

Some conclusions can be drawn with the constructed faster 
R-CNNs:

1. The faster R-CNNs were able to detect diseases includ-
ing decay, periapical periodontitis, and periodontitis in 
dental periapical radiographs.

2. The network train strategy, disease category, and sever-
ity level all have significant influences on performances 
of faster R-CNNs.

3. It is better to train one faster R-CNN for each disease 
classification, rather than training only one faster 
R-CNN for all disease classifications. However, train-
ing one R-CNN for each severity level is discouraged, 
because there tends to be a drawback of performances.

4. Decays and periapical periodontitis with higher severity 
tend to be better predicted than lesions with lower sever-
ity.

5. In mild and moderate levels, periodontitis can be bet-
ter detected than periapical periodontitis, and periapical 
periodontitis better than decay, but the rank was reversed 
in severe levels.
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