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Abstract: The purpose of this research was to investigate and identify PAX9 gene variants in four
Chinese families with non-syndromic tooth agenesis. We identified pathogenic gene variants by
whole-exome sequencing (WES) and Sanger sequencing and then studied the effects of these variants
on function by bioinformatics analysis and in vitro experiments. Four novel PAX9 heterozygous vari-
ants were identified: two missense variants (c.191G > T (p.G64V) and c.350T > G (p.V117G)) and two
frameshift variants (c.352delC (p.S119Pfs*2) and c.648_649insC(p.Y217Lfs*100)). The bioinformatics
analysis showed that these variants might be pathogenic. The tertiary structure analysis showed
that these four variants could cause structural damage to PAX9 proteins. In vitro functional studies
demonstrated that (1) the p.Y217Lfs*100 variant greatly affects mRNA stability, thereby affecting
endogenous expression; (2) the p. S119Pfs*2 variant impairs the subcellular localization of the nuclear
expression of the wild-type PAX9 protein; and (3) the four variants (p.G64V, p.V117G, p.S119Pfs*2,
and p.Y217Lfs*100) all significantly affect the downstream transcriptional activity of the BMP4 gene.
In addition, we summarized and analyzed tooth missing positions caused by PAX9 variants and
found that the maxillary second molar (84.11%) and mandibular second molar (84.11%) were the most
affected tooth positions by summarizing and analyzing the PAX9-related non-syndromic tooth agene-
sis positions. Our results broaden the variant spectrum of the PAX9 gene related to non-syndromic
tooth agenesis and provide useful information for future genetic counseling.

Keywords: tooth agenesis; PAX9 variants; functional studies; phenotypic analysis

1. Introduction

Tooth agenesis, also known as congenitally missing teeth, is one of the most common
congenital abnormalities in man, and it can cause masticatory dysfunction, speech changes,
aesthetic problems, and malocclusion [1]. Based on the number of missing teeth, tooth
agenesis is classified as hypodontia (lack of one to five permanent teeth, excluding the third
molars), oligodontia (lack of six or more permanent teeth, excluding the third molars), or
anodontia (complete lack of teeth) [2]. Tooth agenesis can occur as a non-syndromic form
or can occur as part of a genetic syndrome (syndromic form) [3]. The overall incidence
of tooth agenesis (excluding third molars) has been reported to be approximately 2–10%
in different geographic regions and ethnicities [4–6]. Many factors can lead to congenital
tooth deficiency, among which genetic defects are a major factor [1].

To date, a number of genes have been found to be associated with non-syndromic tooth
agenesis, including axin inhibition protein 2 (AXIN2), muscle segment homeobox 1 (MSX1),
paired box 9 (PAX9), ectodysplasin A (EDA), wingless-type mouse mammary tumor virus
integration site family member 10A (WNT10A), wingless-type mouse mammary tumor
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virus integration site family member 10B, low-density lipoprotein receptor-related protein
6 (LRP6), and opsin 3 (OPN3) [2,7–16]. As one of the earliest discovered pathogenic genes
of tooth agenesis, PAX9 has been a research hotspot [2].

The PAX9 gene is located on chromosome 14 at cytogenetic location 14q13.3 and encodes a
member of the paired box transcription factor, PAX9 [17]. PAX9, which contains an octapeptide,
a pair of box domains, and a 128-amino acid-long paired-type homeodomain, plays a critical
role in odontogenesis [18]. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth
and exhibit craniofacial and limb abnormalities [19]. Pax9 is required for the mesenchymal
expression of Bmp4, Msx1, and Lef1 [19]. So far, approximately 50 pathogenic variants have
been detected, most of them located in the paired domain (PD) [16].

The goal of this study was to broaden the PAX9 variant spectrum associated with
non-syndromic tooth agenesis, investigate the functional implications of newly discovered
novel variant loci, and analyze the genotype–phenotype relationships.

2. Materials and Methods
2.1. Subjects

Four probands with non-syndromic tooth agenesis were identified in the Depart-
ment of Prosthodontics, Peking University School of Stomatology (Beijing, China). All the
probands and available family members of four pedigrees (11 individuals) participated
in this study. The exact position of missing teeth was revealed by oral examinations and
panoramic dental radiographs. Missing teeth due to trauma or extraction were excluded.
Other developmental abnormalities were confirmed via physical examinations. This study
obtained informed consent from all participants and was approved by the School of Stoma-
tology and Hospital Ethics Committee of Peking University (PKUSSIRB-202162021).

2.2. Variant Detection and Analysis

The genomic DNA of the participants was extracted from peripheral blood using
a BioTek DNA Whole-blood Mini Kit (BioTek, Beijing, China) according to the manu-
facturer’s instructions. Whole-exome sequencing was performed to identify potential
pathogenic variants by Beijing Angen Gene Medicine Technology (Beijing, China) with
the Illumina-X10 platform by iGeneTech. To filter the detected variants, we annotated
the orodental-related genes [20]. Then, we excluded silent variants and missense variants
with a minor allele frequency (MAF) ≥ 0.01 in East Asians in the Genome Aggregation
Database (gnomAD, http://gnomad.broadinstitute.org/ (accessed on 29 November 2021)),
the single Nucleotide Polymorphism database (dbSNP, http://www.ncbi.nlm.nih.gov/
projects/SNP/snpsummary.cgi/ (accessed on 29 November 2021)), the 1000 Genomes
Project database (1000G, http://www.1000genomes.org (accessed on 29 November 2021)),
or the Exome Aggregation Consortium (ExAC, http://exac.broadinstitute.org (accessed on
29 November 2021)).

For the bioinformatics analysis, Mutation Taster (https://www.mutationtaster.org/
(accessed on 7 January 2022)) was used to evaluate the disease-causing potential of these
variants, and the functional effects and pathogenicity of two missense mutations were
predicted using the Sorting Intolerant From Tolerant (SIFT; http://provean.jcvi.org/index.
php (accessed on 7 January 2022)), Protein Variation Effect Analyzer (PROVEAN; http://
provean.jcvi.org/index.php (accessed on 7 January 2022)), Polymorphism Phenotyping v2
(PolyPhen-2; http://genetics.bwh.harvard.edu/pph2/ (accessed on 7 January 2022)), and
Functional Analysis through Hidden Markov Models (fathmm; http://fathmm.biocompute.
org.uk/inherited.html (accessed on 7 January 2022)).

For conservation analysis, the amino acid sequences of PAX9 among 10 different
species were obtained from the UniprotKB database (https://www.ncbi.nlm.nih.gov/
(accessed on 7 January 2022)). MEGA 11.0 was used to conduct the multiple sequence
alignment and sequence logos were performed with WebLogo V2.8.2 (http://weblogo.
berkeley.edu/ (accessed on 7 January 2022)).
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For tertiary structural analysis, the PAX9 protein structure was obtained from Al-
phaFold Protein Structure Database (https://alphafold.ebi.ac.uk/ (accessed on 7 January
2022)). PyMol v2.1 (Molecular Graphics System, DeLano Scientific, CA, USA) was used to
visualize the three-dimensional (3D) structure to analyze the structural changes.

2.3. Sanger Sequencing and Clone Sequencing

We confirmed 4 novel pathogenic variants of PAX9 (NM_001372076.1) and excluded
other candidate genes in 4 affected families. Co-segregation analysis and Sanger sequencing
of the probands and their family members were performed to verify the variants of PAX9.
The exons and exon–intron boundaries of the PAX9 gene of four families was amplified
using polymerase chain reactions (PCR). The primer information and conditions for PCR
are shown in Supplementary Table S1. The PCR products were sequenced by Tsingke
Biological Technology (Beijing, China). TA clone sequencing was used to confirm the exact
status of the frameshift variant.

2.4. Construction of Plasmids

The full-length coding sequence of wild-type PAX9 (NM_001372076.1) was subcloned
into the pEGFP-N1 expression vector with enhanced GFP to synthesize the wild-type plas-
mid pEGFP-PAX9. Site-directed mutagenesis was performed to generate four variant plas-
mids: pEGFP-PAX9-G64V, pEGFP-PAX9-V114G, pEGFP-PAX9-S119Pfs*2, and pEGFP-PAX9-
Y217Lfs*100. The Beijing Genomic Institute (BGI, Beijing, China) synthesized all plasmids and
confirmed the entire sequence of the variant constructs. The construction of p.2.4BMP4-Luc,
the downstream luciferase reporter plasmid, was described in our previous work [16].

2.5. Cell Culture and Transfection

In the presence of 5% CO2, 293T cells were grown in Dulbecco’s modified Eagle’s
medium (Invitrogen, Grand Island, NY, USA) with supplements of 10% fetal bovine serum
and 2 mmol/L L-glutamine. Following the manufacturer’s instructions, transient transfec-
tion was carried out using Lipofectamine 3000 (Invitrogen).

2.6. Western Blot Analysis

Proteins from each group were harvested 48 h after transfection. Cell lysates containing
20 µg of total protein were used in the Western blot analysis. After electrophoresis on 10%
polyacrylamide gel, the protein was transferred to a PVDF membrane by electrophoresis
and then incubated with anti-GFP (ab1218) and anti-β-actin (ab8226) mouse antibodies
(Abcam, Cambridge, UK). The membrane was washed and incubated with peroxidase-
conjugate rabbit anti-mouse secondary antibodies (ab6728; Abcam).

2.7. Real-Time PCR and mRNA Stability Studies

Total RNA was isolated using a RNeasy plus mini kit (Qiagen, Germantown, MD,
USA) 12 h after transfection. Then, a Qiagen reverse transcription kit was used for reverse
transcription. A pair of specific primers, PAX9-F: 5′-AACCAGCTGGGAGGAGTGTT-3′

and PAX9-R: 5′-TGATGTCACGGTCGGATG-3′, were designed. They are located at the
N-terminal of the paired box domain and can identify wild type and variant mRNA. The
expression of PAX9 was normalized by eukaryotic 18S ribosomal RNA (rRNA). Cells were
treated with 10 µg/mL actinomycin D (Gibco) 12 h after transfection. After 4 and 8 h of
treatment, total RNA was harvested for reverse transcription. The stability of mRNA is
expressed as the percentage of remaining PAX9 mRNA, as measured by 18SrRNA.

2.8. Subcellular Localization Assay

We transiently transfected 293T cells with pEGFP-N1 expression plasmids containing
GFP-tagged wild-type or variant PAX9 cDNAs, and 48 h after transfection, the cells were
washed three times with phosphate buffer and fixed with 4% paraformaldehyde for 15 min.
The cells were washed three times with phosphate buffer and placed in a mounting medium

https://alphafold.ebi.ac.uk/
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with 4′,6-diamino-2-phenylindole (Solarbio, Beijing, China). An LSM 510 Meta confocal
microscope (Zeiss, Oberkochen, Germany) with a ×40/1.00 numerical aperture oil objective
lens was used to photograph.

2.9. Luciferase Reporter Assay

Each PAX9 expression plasmid and empty vector was co-transfected with p.2.4 BMP4-
Luc and a phRL-TK-Renilla luciferase vector. Cell lysates were collected 48 h after transfec-
tion. Firefly and Renilla luciferase activities were assayed through a dual-luciferase reporter
assay system (Promega) according to the manufacturer’s instructions. The independent
luciferase report experiment was conducted in triplicate. Firefly luciferase activity was
normalized according to Renilla luciferase activity.

2.10. Statistical Analysis

Statistical analyses were performed with GraphPad Prism (V8.0). Student’s t test
was used for mRNA expression, stability studies, and luciferase report tests. Quantitative
results are expressed as mean ± standard deviation (SD), with p < 0.05 being considered
statistically significant.

To analyze the non-syndromic tooth agenesis pattern in patients with PAX9 variants,
5 patients with detailed missing tooth position records from this study and previously
published studies were included. All the human PAX9 variations involved were reported
in the Human Gene Mutation Database (HGMD) and PubMed database. A total of 146 in-
dividuals from 37 studies had no systemic disease or other ectodermal abnormalities, and
detailed missing tooth positions were recorded (Supplementary Table S2). The number of
missing teeth in 151 patients from this study and previous reports was compiled at each
position in the four quadrants. The percentage of missing teeth was counted to measure the
congenital deficiency rate, and the rate of missing teeth at different positions in the same
arch was analyzed by Chi-square test, with p < 0.05 considered statistically significant.

3. Results
3.1. Clinical Findings and Variant Detection

The pedigrees, dental characteristics, and tooth agenesis patterns (excluding the third
molars) of the probands are shown in Figure 1. Four novel heterozygous variants of the
PAX9 gene were identified by WES and confirmed by Sanger sequencing (Figure 1d,i,l,r).
The variants were not identified in the 1000 Genomes, Exome Aggregation Consortium
(ExAC), or gnomAD databases.

In family #836, the proband (II:2) was a 32-year-old female. Clinical and radiographi-
cal examinations revealed two missing mandibular second molars, and the shape of both
maxillary lateral incisors were conic (Figure 1b,e–g). The loss of the right mandibular first
molar was due to an extraction. Her daughter (III:1) was missing all second molars and the
right maxillary second premolar (Figure 1c). Her parents (I:1 and I:2) and brother (II:1) were
normal. The proband and her daughter carried a heterozygous missense variant (c.350T > G;
p.Val117Gly/p.V117G) (Figure 1d). The variant was not identified in the proband’s parents
and brother, indicating de novo.

In family #350, the proband (III:1) was a 26-year-old female. She was diagnosed with
oligodontia due to the agenesis of 18 permanent teeth, including all molars, five premolars,
one canine, and four incisors (Figure 1j). She provided a family history that showed that
her grandmother (I:2), father (II:2), elder sister (III:2), three uncles (II:4, II:5, II:6), and one
cousin (III:3) had the same phenotypes. A heterozygous frameshift variant (c.648_649insC;
p.Tyr217Leufs*100/p.Y217Lfs*100) was identified in the proband (Figure 1i). Unfortunately,
other members of the family were not available for genetic testing.
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Figure 1. Pedigree, dental characteristics, and sequencing chromatograms of four families. (a) Ped-
igree of family #836. (b) Panoramic radiographs and schematic of #836 proband (II:1) with tooth 
agenesis. (c) Panoramic radiographs and schematic of #836 proband’s daughter (III:1) with tooth 
agenesis. (d) Sequencing chromatograms of available DNA in family #836 present a heterozygous 
PAX9 missense variant (c.350T > G; p.Val117Gly) identified in the proband (II:1) and her father 
(III:1). (e–g) Digital photographs of #836 proband (II:1). (h) Pedigree of family #350. (i) Sequencing 
chromatograms of available DNA in family #350 present a heterozygous PAX9 frameshift variant 
(c.648_649insC; p.Tyr217Leufs*100) identified in the proband (III:1). (j) Panoramic radiographs and 
schematic of #350 proband (III:1) with tooth agenesis. (k) Pedigree of family #821. (l) Sequencing 
chromatograms of available DNA in family #821 present a heterozygous PAX9 frameshift variant 
(c.352delC; p.Ser119Profs*2) identified in the proband (III:1). (m) Panoramic radiographs and sche-
matic of #821 proband (III:1) with tooth agenesis. (n–p) Digital photographs of #821 proband (III:1). 
(q) Pedigree of family #622. (r) Sequencing chromatograms of available DNA in family #622 present 
a heterozygous PAX9 missense variant (c.191G > T; p.Gly64Val) identified in the proband (II:2) and 
her father (I:1). (s) Panoramic radiographs and schematic of #622 proband (II:2) with tooth agenesis. 
(t–v) Digital photographs of #622 proband (II:2). The arrow in the pedigree indicates the proband. 
The asterisks in the pedigree represent participating family members. Squares and circles with a 
slash in the pedigree represent individuals who have passed away. Asterisks in panoramic radio-
graphs and black squares in the schematics indicate congenital missing permanent teeth. Gray 
squares in the schematics indicate extracted teeth. Mand, mandibular; Max, maxillary. 

Figure 1. Pedigree, dental characteristics, and sequencing chromatograms of four families. (a) Pedi-
gree of family #836. (b) Panoramic radiographs and schematic of #836 proband (II:1) with tooth
agenesis. (c) Panoramic radiographs and schematic of #836 proband’s daughter (III:1) with tooth
agenesis. (d) Sequencing chromatograms of available DNA in family #836 present a heterozygous
PAX9 missense variant (c.350T > G; p.Val117Gly) identified in the proband (II:1) and her father
(III:1). (e–g) Digital photographs of #836 proband (II:1). (h) Pedigree of family #350. (i) Sequencing
chromatograms of available DNA in family #350 present a heterozygous PAX9 frameshift variant
(c.648_649insC; p.Tyr217Leufs*100) identified in the proband (III:1). (j) Panoramic radiographs and
schematic of #350 proband (III:1) with tooth agenesis. (k) Pedigree of family #821. (l) Sequencing
chromatograms of available DNA in family #821 present a heterozygous PAX9 frameshift vari-
ant (c.352delC; p.Ser119Profs*2) identified in the proband (III:1). (m) Panoramic radiographs and
schematic of #821 proband (III:1) with tooth agenesis. (n–p) Digital photographs of #821 proband
(III:1). (q) Pedigree of family #622. (r) Sequencing chromatograms of available DNA in family
#622 present a heterozygous PAX9 missense variant (c.191G > T; p.Gly64Val) identified in the proband
(II:2) and her father (I:1). (s) Panoramic radiographs and schematic of #622 proband (II:2) with tooth
agenesis. (t–v) Digital photographs of #622 proband (II:2). The arrow in the pedigree indicates the
proband. The asterisks in the pedigree represent participating family members. Squares and circles
with a slash in the pedigree represent individuals who have passed away. Asterisks in panoramic
radiographs and black squares in the schematics indicate congenital missing permanent teeth. Gray
squares in the schematics indicate extracted teeth. Mand, mandibular; Max, maxillary.
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In family #821, the proband was a 26-year-old female. She had congenital absence
of most permanent teeth except for her mandibular lateral incisors and first premolars
(Figure 1m–p). The proband mentioned that her grandfather (I:1), father (II:2), and aunt (II:1)
were congenitally missing permanent teeth. A heterozygous frameshift variant (c.352delC;
p.Ser119Profs*2/p.S119Pfs*2) was identified in the proband (Figure 1l). Unfortunately,
other members of the family were not available for genetic testing.

In family #622, the proband (II:2) was a 19-year-old female and had 22 missing per-
manent teeth. All first premolars and two incisors existed and most primary teeth of the
proband were retained (Figure 1s–v). Her father (I:1) had the phenotype of non-syndromic
tooth agenesis. The proband and her farther carried a heterozygous missense variant
(c.191G > T; p.Gly64Val/p.G64V) (Figure 1r). According to family co-segregation, this
variant was inherited by autosomal dominant inheritance.

3.2. Conservation and Bioinformatics Analysis

In order to predict the harm of four novel PAX9 variants, we performed conservative
and bioinformatics analysis. Three variants (p.Gly64Val, p.Val117Gly, and p.Ser119Profs *2)
were located in the highly conserved PD of PAX9 (Figure 2a). Four variants were predicted
to be damaging or deleterious by SIFT, PROVEAN, PolyPhen-2, fathmm, or Mutation
Taster, and they were all pathogenic according to the ACMG Classification [21] (Table 1).
Based on the result of conservation analyses in multiple species, 64Gly, 117Val, 119Ser, and
217Tyr were highly conserved (Figure 2b,c).

Table 1. Functional impact prediction of PAX9 variants.

Number Exon Nucleotide
Change Protein Change Variation

Type SIFT a PROVEAN b PolyPhen-2 c Fathmm d Mutation
Taster e

ACMG
Classification
(Evidence of

Pathogenicity)

#836 II 2 2 c.350T>G p. Val117Gly Missense 0.000
Damaging

−6.789
Deleterious

0.981
(probably

damaging)

−5.97
Damaging

Disease-
causing

Pathogenic
PS2 + PS3 + PM1 +
PM2 + PP1 + PP2

+ PP3 + PP4

#821 III 1 2 c.352delC p. Ser119Pro
fs*2 Frameshift Disease-

causing

Pathogenic
PVS1 + PS3 + PM1

+ PM2 + PM4

#622 II 2 2 c.191G>T p. Gly64Val Missense 0.000
Damaging

−8.976
Deleterious

1.000
(probably

damaging)

−6.84
Damaging

Disease-
causing

Pathogenic
PS3 + PM1 + PM2
+ PP1 + PP2 + PP3

#350 III 1 3 c.648_649insC p. Tyr217Leu
fs*100 Frameshift Disease-

causing

Pathogenic
PVS1 + PS3 + PM2

+ PM4

a The SIFT score threshold is predefined at 0.05 for binary classification. A protein variant with a score below the
threshold is predicted to be damaging; otherwise, it is predicted to be tolerated. b The PROVEAN score threshold
is predefined at −2.5 for binary classification. A protein variant with a score below the threshold is predicted to be
deleterious; otherwise, it is predicted to be neutral. c The PolyPhen-2 analysis appraises a mutation by score as probably
damaging (0.909–1), possibly damaging (0.447–0.908), or benign (0–0.446) using the HumVar database. d Fathmm
predicts the functional effects of protein missense variants (damaging vs. tolerated). e Mutation Taster analysis predicts
whether a protein variant is disease-causing (probably deleterious), disease-causing automatic, polymorphism (probably
harmless), or polymorphism automatic.

A spatial structural analysis revealed that the residue at sequence position 64 in this
protein is a glycine that has no side chain, giving the protein increased flexibility at this
location (Figure 2d,d’). The variant (p.Gly64Val) residue is a valine that has a hydrophobic
aliphatic side chain (Figure 2e,e’). For the variant p. Val117Gly, 117 sites changed from
valine with a side chain to glycine without a side chain, which increased the affinity
of protein at this position (Figure 2f,f’,g,g’). The p. Ser119Profs*2 variant changed the
conformation of PD (Figure 2h,h’). The three-dimensional structure of the p.Tyr217Leufs
*100 variant protein changed significantly (Figure 2i,i’).
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119Ser are shown in red). (h’) Structure of p.Ser119Profs*2 in PAX9 (the changed amino acids are
shown in yellow). (i) Structure of wild-type PAX9 (the amino acids behind 217Tyr are shown in red).
(i’) Structure of p.Tyr217Leufs*100 in PAX9 (the changed amino acids are shown in yellow).

3.3. Functional Analyses of PAX9 Variants

To confirm that these variants affect the function of PAX9, we performed in vitro
studies using plasmids containing four novel PAX9 variants. Western blot (Figure 3g)
showed that two variant proteins (p.G64V and p.V117G) caused by a missense variant
and one truncated protein (p.S119Pfs*2) caused by a frameshift variant were expressed
in vitro. However, one variant protein (p.Y217Lfs*100) caused by a frameshift variant
(c.648_649insC) was almost undetectable. We then examined the mRNA expression level
of PAX9 variants. Baseline expression levels of truncated mRNA(p.Y217Lfs*100) did not
differ from the wild-type PAX9 (p > 0.05) (Figure 3h). After actinomycin D treatment, the
percentage of residual mutant mRNA (p.Y217Lfs*100) was significantly lower than that
of wild-type mRNA at 4 h (p < 0.05) and in 8 h (p < 0.01) (Figure 3i). This result indicates
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that this frameshift variant (c.648_649insC) expresses an unstable mRNA that is more
susceptible to degradation compared to wild-type PAX9.
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Subcellular localization showed that two missense variants (p.G64V and p.V117G)
were located in the nucleus as well as in the wild type (Figure 3c–c”,d–d”), while the
frameshift variant (p. S119Pfs*2) was located in the whole cytoplasm (Figure 3e–e”). The
frameshift variant (p.Y217Lfs*100) was weakly expressed in the nucleus (Figure 3f–f”). The
luciferase results showed that the transactivation capacity of PAX9 to the BMP4 promoter
(one of the downstream targets of PAX9 during the process of tooth development) was
significantly reduced in p.G64V, p.V117G, p.S119Pfs*2, and p.Y217Lfs*100 when compared
with the wild-type group (p < 0.05) (Figure 3e).

3.4. Statistical Analysis of the PAX9-Related Non-Syndromic Tooth Agenesis Pattern

We collected 151 non-syndromic patients and recorded their PAX9 variants, variant
domains, and detailed missing teeth sites (Supplementary Table S2). The third molars
and extracted teeth were excluded. The number of missing teeth of every position in four
quadrants was calculated (Figure 4a). The average number of missing teeth was 10.89 and
the missing rate was 38.88% (excluding the third molars). The percentage of missing teeth
in the maxillary arch (43.33%) was higher than in the mandibular arch (34.44%) (p < 0.0001).
The lower second molars (84.11%), upper second molars (84.11%), and upper first molars
(74.83%) were the most affected, and the lower first premolars (5.96%), canines (7.62%), and
lateral incisors (9.60%) were the least affected. Statistically significant differences (p < 0.05)
were found among different positions in the same arch (Figure 4b).
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Figure 4. The pattern of PAX9-related non-syndromic tooth agenesis. (a) The number of missing teeth
in 151 patients with PAX9 variants. (b) The rate of missing teeth in 151 patients with PAX9 variants
was compiled at seven tooth positions in the maxillary and mandibular regions. The rate of missing
teeth at different positions in the maxillary arch was statistically different using Pearson’s chi-squared
test, X2 (6, N = 2114) = 666.98, p < 0.001. The rate of missing teeth at different positions in the
mandibular arch was statistically different using Pearson’s chi-squared test, X2 (6, N = 2114) = 662.58,
p < 0.001. Max, maxillary; Mand, mandibular; CI, central incisor; LI, lateral incisor; Ca, canine; PM1,
first premolar; PM2, second premolar; Mo1, first molar; Mo2, second molar.
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4. Discussion

Non-syndromic tooth agenesis caused by PAX9 variants is inherited by autosomal
dominant inheritance [2]. In this work, we identified four novel PAX9 variants in Chinese
families with non-syndromic tooth agenesis, including two missense variants (p.G64V
and p.V117G) and two frameshift variants (p.S119Pfs*2 and p.Y217Lfs*100). Although
we studied two families (#350 and #821) in which we only had access to the proband’s
sequencing results, the clinical phenotype, gene sequencing results, and pedigree map of
these four families are consistent with the autosomal dominant inheritance model.

There are now 66 PAX9 variations linked to non-syndromic tooth agenesis, with the
majority being missense (34/66) and frameshift (21/66) variants. We discovered that 82.3%
(28/34) of missense variants and 76.2% (16/21) of frameshift variants are identified in the
PD. (Supplementary Table S2). In this study, two missense variants (p.G64V and p.V117G)
were located in the PD, which supports the hypothesis that missense variants are more
likely to be detected at ‘hotspot’ amino acids that are highly conserved and represent
regions of structural or functional importance [22]. One frameshift variant (p.S119Pfs*2)
was also located in the PD. Our results further confirm that the PD is a hotspot region for
PAX9 variants [16].

PD is a highly conserved functional domain. PAX9 protein regulates downstream
DNA through PD, thereby affecting tooth development [23,24]. Three variants (p.G64V,
p.V117G, and p.S119Pfs*2) were located in the highly conserved PD (Figure 2a–c). Our
tertiary structural analysis revealed that p.V117G and p.G64V change the PD structure,
whereas p.S119Pfs*2 leads to extreme structural disorders of the PD. These results suggest
that these three variants may affect the DNA-binding ability of PAX9. Although p.Y217Lfs
*100 is not located in the PD, tertiary structure analysis shows that the structure of the whole
protein has undergone tremendous changes. It possible that the p.Y217Lfs*100 variant
changed the function of PAX9.

The results of in vitro experiments further proved that these four variants may affect pro-
tein function. Western blot testing (Figure 3g) demonstrated that three variant proteins (p.G64V,
p.V117G, and p.S119Pfs*2) were expressed in vitro; however, the p.Y217Lfs*100 variant pro-
tein was almost undetectable. The subsequent mRNA stability experiments proved that the
p.Y217Lfs*100 variant greatly affected mRNA stability. In the last few years, it has become evi-
dent that mRNA stability/turnover provides an important mechanism for post-transcriptional
control of gene expression [25]. Many studies have reported that frameshift variants can lead
to disease by affecting the stability of mRNA [26–28]. Therefore, the p.S119Pfs*2 variant may
lead to tooth agenesis by affecting the stability of mRNA, but the specific mechanism needs
more experiments to verify. Although the results of two missense variants in subcellular
localization were consistent with wild-type PAX9, the binding ability to the BMP4 promoter
was affected. Subcellular localization and binding to the BMP4 promoter of the p.S119Pfs*2
variant were not consistent with wild-type PAX9. Studies have shown that Pax9 directly acti-
vates the Bmp4 promoter, which is very important in tooth development [29–31]. Our results
suggest that all four variants (p.G64V, p.V117G, p.S119Pfs*2, and p.Y217Lfs*100) affect BMP4
expression, which may be the mechanism of tooth agenesis. However, further functional
experiments are needed to clarify its exact mechanism.

An analysis of the missing tooth positions in 151 non-syndromic tooth agenesis patients
with PAX9 variants revealed that the maxillary second molar (84.11%) and mandibular
second molar (84.11%) were the most affected tooth positions, followed by the maxillary
first molar (74.83%), maxillary second premolar (64.24%), and mandibular central incisor
(49.01%). These results suggest that PAX9 may play an important role in the development
of these teeth, especially the second molars. Moreover, we found that the mandibular
first premolar (5.96%), mandibular canine (7.62), mandibular lateral incisor (9.60%), and
maxillary central incisor (9.93%) were least affected. This finding has not been reported
before and indicates that PAX9 may not be essential during the development of these teeth.

Taken together, we report four novel PAX9 variants in non-syndromic tooth agenesis,
and our results broaden the variant spectrum of PAX9. Pattern analysis of non-syndromic
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tooth agenesis caused by PAX9 variants can help with clinical diagnosis, treatment, and
genetic counseling.
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