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The condyle plays a pivotal role in mandible development, which is regulated by various
signaling molecules. The hedgehog (Hh) signaling pathway is known to modulate several
processes during bone formation. However, the role of Gli1, as the read-out of Hh signaling
activity, in condylar development and fracture healing has not been clarified. In this study,
we discovered that a population of Gli1+ cells residing immediately below the cartilage
functions as osteogenic progenitors by using Gli1-CreERT2;tdTomato mice. These Gli1+
cells contributed to nearly all osteoblasts in the subchondral bone during condyle postnatal
development. Interestingly, Gli1-lineage cells could differentiate into osteoblasts and
chondrocytes during fracture healing. Inhibiting Wnt/β-catenin signaling downregulated
the proliferation and differentiation of Gli1+ cells in vitro. These findings suggest that Gli1+
progenitor cells participate in not only normal bone formation but also fracture healing;
moreover, these cells may provide a potential target for promoting bone regeneration of the
mandible.
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INTRODUCTION

The condyle is an important growth site of the mandible, which plays an essential role in mastication
and speech (Ohrbach and Dworkin, 2016). Condylar cartilage promotes mandible growth through
endochondral bone formation (Hinton et al., 2017). The chondrogenesis and subsequent
endochondral ossification observed at the mandibular condyle are regulated by various signaling
molecules (Owtad et al., 2013). Indian hedgehog (Ihh) signaling critically regulates osteoblast
differentiation during condylar embryonic and postnatal (PN) development (Kurio et al., 2018;
Bechtold et al., 2019). Global Ihh knockout at the embryonic stage leads to the complete absence of
normal functional discs and lubricin-expressing joint cavities, as well as condylar cartilage dysplasia
(Shibukawa et al., 2007). Ablation of Ihh in the cartilage of juvenile/early adult mice compromises
chondroprogenitor organization and function and results in reduced chondroprogenitor and
chondrocyte proliferation (Kurio et al., 2018).

Gli1 functions as the read-out of endogenous hedgehog (Hh) signaling activity and a transcription
factor that regulates the expression of Hh target genes (Sun et al., 2020). However, few studies have
reported the physiological function of Gli1 in the maintenance or differentiation of osteoblast
progenitors in PN mice. Recent studies have used genetic lineage tracing to demonstrate that Gli1
marks stem/progenitor cells in the long bones, craniofacial bones, incisors, and periodontal
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ligaments of adult mice (Zhao et al., 2014; Zhao et al., 2015; Shi
et al., 2017; Men et al., 2020). However, the potential relationship
between Gli1 and PN skeletal progenitors in the condyle has not
been investigated.

In this study, we revealed that Gli1+ cells residing immediately
below the cartilage are osteogenic mesenchymal progenitors by
using Gli1-CreERT2;tdTomato mice. These Gli1+ cells contribute
to nearly all of the osteoblasts in the subchondral bone during
condyle PN development. In addition, Gli1 lineage cells
differentiated into osteoblasts and chondrocytes during
condylar fracture healing. Therefore, Gli1+ progenitor cells
participate in normal bone formation and fracture healing.

MATERIALS AND METHODS

Animals
Gli1-CreERT2 knock-in (JAX#007913) (Ahn and Joyner, 2004),
ROSA26loxp-STOP-loxp-tdTomato conditional reporter (JAX#007905)
(Madisen et al., 2010), and Gli1-LacZ heterozygote (JAX#008211)
(Bai et al., 2002) were used in this study. The mice were housed in
pathogen-free conditions and analyzed under a mixed
background. Male and female mice were used for analysis. All
experiments were approved by the Institutional of Animal Care
and Use Committee of Peking University.

Tamoxifen Administration
Tamoxifen (T5648, Sigma, St. Louis, MO, United States) was
dissolved in corn oil (C8267, Sigma) to a concentration of 20 mg/
ml and injected intraperitoneally at a dose of 1.5 mg/10 g body
weight. Neonatal mice were injected once, and adult mice was
injected for three consecutive days.

Histological Analysis
Mouse mandibles were dissected, fixed overnight in 4%
paraformaldehyde, and then decalcified with 10% EDTA (pH
7.4) for 2–4 weeks. The samples were processed for paraffin
embedding and then cut into sections with 6 μm thickness.
Hematoxylin and eosin (H&E) staining was performed
according to the standard protocol (Schmitz et al., 2010).

Safranin O and Fast Green Staining
Paraffin embedded sections were subjected to Safranin O and fast
green staining (G1371, Solarbio, Beijing, China) following
standard protocols (Schmitz et al., 2010).

Immunofluorescence Staining
The decalcified samples were dehydrated in 15% sucrose/PBS
solution for 2 h, 30% sucrose/PBS for 2 h, and 30% sucrose/OCT
(4,583, Sakura, Torrance, CA, United States) overnight at 4°C and
then embedded in OCT. Cryosections measuring 8 μm in
thickness were immunofluorescence-stained following standard
protocols. The primary antibodies included Runx2 (1:100,
#12556, Cell Signaling Technology, Danvers, MA,
United States), Osterix (1:100, ab209484, Abcam, Cambridge,
United Kingdom), β-galactosidase (β-gal; 1:200, ab9361, Abcam),
osteocalcin (Ocn; 1:100, ab93876, Abcam), and Sox9 (1:100,

ab185230, Abcam). Alexa Fluor 488 and Alexa Fluor 568 (1:
200, Invitrogen, Waltham, MA, United States) were used as
secondary antibodies. DAPI (62248, Invitrogen) was used for
counterstaining. ImageJ was used to analyzed the ratio of
Osterix+/tdTomato + cells to Osterix + cells.

Cell samples were plated in a 4-well chamber slide
(PEZGS0416, Millipore). The slides were washed with PBS,
immediately fixed with 4% paraformaldehyde for 15 min, and
blocked with goat serum for 30 min at room temperature. The
cells were incubated with the primary antibody (Ki67, 1:200,
ab15580) at 4°C overnight, then incubated with secondary
antibodies at room temperature for 1 h, stained with
phalloidin for 20 min (1:50, A22287, ThermoFisher Scientific),
and counterstained with DAPI.

Cell Culture and Sorting
Condylar subchondral bones were obtained from 1-week-old
Gli1-CreERT2;tdTomato mice 1 week after induction. The
cartilage was meticulously dissected and removed with fine
forceps. The condyle tissue was cut into tiny pieces and
transferred into six-well culture plates with growth medium
[α-MEM (12571-048, Thermo Fisher Scientific, Waltham,
MA, United States) supplemented with 10% fetal bovine
serum, 100 U/mL penicillin, and 100 U/mL streptomycin)
in a 5% CO2 atmosphere at 37°C. After 7 days, the cells
were digested with TrypLE (1897328, GIBCO) and then
filtered through a 40 mm cell strainer (352,340, Falcon, NY,
United States) to remove the remaining cell mass. tdTomato +
cells were sorted via flow cytometry by using a FACS Aria Sorp
cell sorter (BD Biosciences, NJ, United States). P2-cultured
cells were used for colony formation and osteogenic
differentiation assays.

Colony Formation Assay
P2 tdTomato + cells were seeded at a density of 2000 cells per well
into 24-well culture plates and left undisturbed for the first 2 days.
Then, the growth medium was changed every other day with or
without Wnt inhibitor (XAV939) supplementation (1.0 µM,
S1180, Selleck, Houston, TX, United States). XAV939 was
dissolved in dimethyl sulfoxide (DMSO) according to
manufacturer’s recommendations and used in in vitro
experiments, and the control group was treated with the same
DMSO concentration. After 7 days, the culture plates were
stained with a mixture of 0.1% toluidine blue and 2%
paraformaldehyde. Colonies with >1 mm diameter were
counted as a single colony cluster.

Osteogenic Differentiation Assay
A total of 2 × 105 tdTomato + cells were cultured in a 24-well plate
and induced in osteogenic differentiation medium supplemented
with 10 nM dexamethasone, 100 µM L-ascorbic acid phosphate,
and 5 mM β-glycerophosphate (Sigma-Aldrich). XAV939 was
added to the culture media of different groups. After 21 days of
induction, mineralized nodules were detected by staining with 2%
alizarin red S (400480250, ACROS Organics, Fair Lawn, NJ,
United States). Alizarin red S crystals were dissolved in
distilled water with 10% cetylpyridinium chloride and
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measured at 590 nm on a BioTek ELx808 system (BioTek
Instruments, Vermont, United States).

Western Blot
Cell were lysed using RIPA buffer supplemented with protease
inhibitor for 30 min on ice. Protein extracts were loaded onto
10% (w/v) sodium dodecyl sulfate–polyacrylamide gels and
then transferred to PVDF membranes. The membranes were
blocked with 5% milk for 1 h and incubated with primary
antibodies, including Runx2 (1:1,000, #12556, Cell Signaling
Technology) and Ocn (1:1,000, ab93876, Abcam), at 4°C
overnight. After the cells were incubated with HRP-
conjugated secondary antibody for 1 h at room temperature,
signals were detected through SuperSignal West Femto
Maximum Sensitivity Substrate (34095, ThermoFisher
Scientific), and images were acquired using Fusion Fx
(Vilber Lourmat, France). Integrated density was measured
by ImageJ for quantification analysis.

Condyle Fracture and Sham Surgery
The surgical approach followed a previously described protocol
(Chen et al., 2019). In brief, the mice were anesthetized by
intraperitoneal injection of 10 μL/g 4% chloral hydrate. A pre-
auricular incision was made on the left side. The parotid tissues
were lifted, and the masseter muscle was blunt-dissected. The
condyle neck was exposed and clipped by scissors. For the sham
surgery, the condylar neck was exposed but kept intact. The
incision was closed by suturing in layers. The coronal section was
harvested for histological analysis.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 6, and
independent two-tailed Student’s t-tests were used to evaluate
significant differences. Statistical data are presented as mean ±
SD. p < 0.05 was considered statistically significant.

RESULTS

Postnatal Gli1+ Cells are Spatially Located
at the Superficial Layers of theCartilage and
Chondro-Osseous Junction
Gli1+ cells have been identified as a mesenchymal stem cell
(MSC) population supporting craniofacial bone homeostasis
and repair (Zhao et al., 2015; Guo et al., 2018). To investigate
the expression of Gli1 in the mandibular condyle, we used wild
type mice and collected samples at PN 3.5 days, 1 week, 2 weeks,
and 1 month. H&E staining showed a superficial layer, a
polymorphic progenitor cell layer, a flattened chondrocyte
zone, and a hypertrophic chondrocyte zone at each stage
(Figure 1A). The thickness of the condylar cartilage decreased
from PN 3.5 days to 1 month old. Sox9, a master gene for
chondrogenesis, is expressed in chondroprogenitor cells and
chondrocytes (Liu et al., 2018; Sahu et al., 2020). We
colocalized Sox9 by β-galactosidase (β-gal) immunostaining to
characterize the expression pattern of Gli1 (Figure 1B). Few
Gli1+ cells overlapped with Sox9+ chondroprogenitor cells and
chondrocytes. Instead, Gli1+ cells consistently located at the

FIGURE 1 | Postnatal Gli1+ cells are spatially located at the superficial layers of the cartilage and chondro-osseous junction. (A) Histological analysis of mandibular
condyles from wild type (WT) mice at PN 3.5 days, 1 week, 2 weeks, and 1 month. (B) Sox9 and β-gal double-immunostaining of condyles from Gli1-LacZ mice at PN
3.5 days, 1 week, 2 weeks, and 1 month. The lower panel shows the high-magnification images of the white box insets in the upper panel. The yellow dotted line in (A)
shows the chondro-osseous junction. Arrows in (B) show Gli1+ cells at the chondro-osseous junction. SF, superficial layer; PM, polymorphic zone; FC, flattened
chondrocyte zone; HC, hypertrophic zone. n = 3 mice/group. Scale bars, 100 μm.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8196893

Chen et al. Gli1+ Cells in Development and Fracture Repair

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


superficial layer and chondro-osseous junction (Figure 1B). The
superficial zone provides a niche for fibrocartilage stem cells that
give rise to chondrocytes and osteocytes (Embree et al., 2016), and
the chondro-osseous junction is the zone in which
chondrogenesis ends and osteogenesis begins (Shen and
Darendeliler, 2005; Jing et al., 2015). Therefore, the specific
expression of Gli1+ in these two regions suggests that these
cells may play a vital role in endochondral ossification.

Gli1+ Cells at the Chondro-Osseous
Junction Are Osteogenic Progenitors
Gli1-CreERT2;tdTomato mice were generated, and lineage
tracing was performed on neonatal mice to investigate the
differentiation and migration of Gli1+ cells in bone formation
during PN development (Figure 2A). Three days after

induction, Gli1+ cells were found at the cartilage surface
and chondro-osseous junction (Figure 2B, Supplementary
Figure S1). Few Gli1+ cells were detected in the progenitor
cell layer, chondrocyte zones, or subchondral bone, similar to
the expression pattern of β-gal in PN3.5 Gli1-LacZ mice.
Notably, 1 week after tracing, the Gli1+ progeny below the
cartilage extended considerably toward the trabecular bone
(Figure 2B). After 2 weeks of chasing, Gli1+ progeny
expanded almost throughout the trabecular bone. The
tdTomato + cells in the perichondrial layer also expanded
but did not yet reach the chondro-osseous junction at this time
(Supplementary Figure S1). One month after induction,
descendants of the Gli1+ cells occupied nearly all of the
trabecular bone, including not only osteoblasts on the bone
surface but also osteocytes positioned in the bone matrix
(Figure 2B). Interestingly, 3 months after induction, the

FIGURE 2 | Gli1+ progenitor cells contribute to the osteoblast lineage during condylar postnatal development. (A) Gli1-CreERT2;tdTomato mice were induced by
tamoxifen at PN 0.5 d, and the sample were harvested 3 days post-tamoxifen (3.5dpt), 1 week post-tamoxifen (1wpt), 1 month post-tamoxifen (1mpt), and 3 months
post-induction (3mpt). (B) tdTomato immunostaining of condyles fromGli1-CreERT2;tdTomatomice 3 days, 1 week, 1 month and 3 months after tamoxifen induction at
PN 0.5. (C) Osterix and tdTomato double-immunostaining of condyles from Gli1-CreERT2;tdTomato mice 3 days, 1 week, 1 month and 3 months after tamoxifen
induction at PN 0.5. The white dotted line indicates the demarcation between the cartilage and subchondral bone. The lower panel represent high-magnification images
of the white box insets in upper panel. Asterisks indicate the absence of tdTomato + signals. All data are presented as mean ± SD, n = 4mice/group. Scale bars, 100 μm.
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number of Gli1+ progeny in the subchondral bone
dramatically decreased (Figure 2B). Similarly, Gli1+ cells at
the cartilage surface increased at 1 month and then decreased
at 3 months of tracing (Figure 2B).

Next, we focused on the Gli1+ cells located at the chondro-
osseous junction. To verify whether these cells give rise to
osteoblasts in the subchondral bone, we analyzed the
colocalization of Gli1-linege cells with Osterix + osteoblasts.
Three days after induction, less than 10% of the Osterix +
cells beneath the articular cartilage overlapped with the Gli1+
cells (Figure 3C). One month after induction, almost 98% of the
Osterix + cells appeared to be derived from the Gli1+ cells

(Figure 3C). Approximately 49% of the Osterix + cells
overlapped with Gli1+ progeny after 3 months of tracing
(Figure 3C). Collectively, the Gli1+ cells at the chondro-
osseous junction provide a major source of osteoblasts for
trabecular bone formation in PN mice.

Condylar cartilage is categorized as secondary cartilage and
undergoes adaptive changes in response to external stimuli even
after natural growth (Delatte et al., 2004; Liu et al., 2012; Fujita
et al., 2013; Chen et al., 2015). To investigate whether Gli1+ cells
contribute to the osteoblast lineage during condylar remodeling
further, we induced 4-week-old adult Gli1-CreERT2;tdTomato
mice (Supplementary Figure S2A). One day after induction,

FIGURE 3 | Gli1+ osteogenic progenitors contribute to condylar fracture repair. (A) Gli1-CreERT2;tdTomatomice were induced by tamoxifen at 1 month of age for
three consecutive days. The surgery was performed 1 week post-tamoxifen (1wpt), and the samples were collected 2 weeks post-tamoxifen (2wpt). (B) The condyle
neck was exposed and clipped by scissors. (C) Sox9 and tdTomato double-immunostaining of condyles from Gli1-CreERT2;tdTomatomice 1 week after sham surgery.
(D)Osterix and tdTomato double-immunostaining of condyles fromGli1-CreERT2;tdTomatomice 1 week after sham surgery. White arrows indicate positive signals,
and asterisks indicate the absence of signals in the sham/fracture sites. n = 3 mice/group. Scale bars, 100 μm.
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several Gli1+ cells were scattered beneath the articular cartilage
and overlapped with Runx2+ osteoblast lineage cells
(Supplementary Figure S2B). One month after induction,
Gli1+ cells expanded abundantly into the subchondral bone
and gave rise to nearly all of the Runx2+ cells detected
(Supplementary Figure S2B). Colocalization of the Gli1+
progeny and Runx2+ cells (Supplementary Figure S2B) could
still be observed even after 9 months of tracing. These results
suggest that Gli1+ cells residing at the chondro-osseous junction
are osteogenic progenitors and could give rise to an osteoblast
lineage during condylar PN development and adaptive
remodeling.

Gli1+ Osteogenic Progenitors Contribute to
Fracture Repair
A condylar fracture was created to observe the healing process
and test whether Gli1+ cells contribute to bone regeneration
(Supplementary Figure S3A). The cartilage callus was
initiated around the fractured site 1 week after surgery
(Supplementary Figure S3B). Then, spongy bone formed to
replace the cartilage tissue at 2 weeks (Supplementary Figure
S3C). Finally, remodeling of the hard callus into a lamellar
bone occurred to complete the healing process
(Supplementary Figure S3D), which was comparable to
sham surgery (Supplementary Figure S3E). We induced
Gli1-CreERT2;tdTomato mice at 1 month of age, fractured
the mandibular condyle 1 week after induction, and then
harvested the sample 1 week after surgery (Figures 3A,B).
No tdTomato fluorescence signal was detected at the sham-

operated side (Figures 3C,D). At the fracture side, however,
Gli1+ cells were activated, and their progeny migrated toward
the fracture callus. Immunofluorescent staining confirmed
that the Gli1+ progeny contributed to Sox9+ chondrocytes
(Figure 3C), Osterix + osteoblasts (Figure 3D), and Ocn +
osteoblasts (Supplementary Figure S4). These data confirm
that Gli1 supports the skeletal progenitor pool for bone and
cartilage formation during fracture healing.

Gli1+ Cells Are Responsive to Wnt/
β-Catenin Signaling
Recent studies have shown that Wnt/β-catenin signaling plays
an important role in the osteogenic differentiation of MSCs (Li
et al., 2019; Liang et al., 2021). To explore whether Gli1+
progenitors are regulated by Wnt/β-catenin signaling, we
harvested tdTomato + cells from Gli1-CreERT2;tdTomato
condyles 1 week after induction. The Gli1+ progeny was
capable of colony formation and could differentiate into
osteoblasts. The addition of Wnt inhibitor, XAV939, to the
culture medium decreased colony formation considerably
(Figure 4A). Immunofluorescence staining showed fewer
Ki67 + cells after blocking Wnt signaling (Figure 4B). We
assessed the extent of calcium deposition by alizarin red
staining 3 weeks after osteogenic induction and found that
Gli1+ cells deposited less calcium after addition of Wnt
inhibitor compared with the control after osteogenic
induction (Figure 4C). In addition, the control Gli1+ cells
expressed significantly higher protein levels of Runx2 and Ocn
than the Wnt inhibitor group (Figures 4D, E, Supplementary

FIGURE 4 | Gli1+ cells are responsive to Wnt/β-catenin signaling. (A) Colony formation and quantification analysis of Gli1+ cells from Gli1-CreERT2;tdTomato
condyle. Red arrow indicates colony formation. (B) Ki67 and phalloidin double-immunostaining of Gli1+ cells and quantification analysis of Ki67 + cells from Gli1-
CreERT2; tdTomato condyles.White arrow points to Ki67 + cells. (C) Alizarin red staining and absorbance analysis of Gli1+ cells fromGli1-CreERT2; tdTomato condyles.
(D)Western blot of Runx2 and Ocn after osteogenic induction. (E)Quantitative analysis of Runx2 and Ocn protein levels. All experimental data were verified in three
independent experiments. Scale bars (A,C) 1 mm, (B) 200 μm; *p < 0.05, **p < 0.01.
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Figure S5). Taken together, the results indicate that Wnt/β-
catenin signaling regulates the proliferation and
differentiation of Gli1+ progenitor cells.

DISCUSSION

Condyle development and fracture repair represents an
important but understudied topic in craniofacial research.
Using the genetic lineage tracing technique, we discovered that
Gli1+ cells residing at the chondro-osseous junction are a
predominant source of osteoblasts during condyle PN
development. The number of Gli1+ progeny decreased
remarkably with age, thus suggesting that Gli1+ cells function
as transient osteogenic progenitors. We also provided evidence
that Gli1+ cells support the skeletal progenitor pool and
contribute to not only chondrocytes but also osteoblasts
during fracture healing. Our in vitro study indicated that Wnt/
β-catenin signaling modulates the proliferation and
differentiation of Gli1+ cells.

Multiple populations of MSCs have been identified in long
bones and are marked by nestin and leptin receptors (Mendez-
Ferrer et al., 2010; Zhou et al., 2014). MSCs surrounding bone
marrow sinusoids are capable of multipotent differentiation and
colony formation. Previous lineage tracing studies revealed that
perisinusoidal MSCs give rise to osteoblasts, chondrocytes, and
adipocytes. Another population of cells called skeletal stem cells
(SSCs) was recently identified to be concentrated within the
metaphysis of long bones (Chan et al., 2015; Worthley et al.,
2015; Chan et al., 2018). SSCs specifically differentiate into
osteoblasts, chondrocytes, and bone marrow stromal cells but
not adipocytes. Shi et al. (2017) identified Gli1+ cells residing
immediately beneath the growth plate as a population of
osteogenic progenitors, which are essential for cancellous
bone population. The expression pattern of Gli1+ cells
uncovered in the condyle in the present work is similar but
not identical to that of the metaphysis. In the long bone, Gli1+
cells are located at the articular cartilage surface, the upper
layers of the growth plate, and the chondro-osseous junction. In
the mandibular condyle, Gli1+ cells reside at the superficial
layers of the cartilage and chondro-osseous junction. Both types
of Gli1+ cells at the chondro-osseous junction were proved to be
osteogenic progenitors. Notably, the number of Gli1+ progeny
decreased in the subchondral bone 3 months after induction,
which may be related to bone turnover. The mean lifespan of
osteoblasts is approximately 12 days (Weinstein et al., 1998).
The osteoblasts derived from Gli1+ cells that undergo apoptosis
could account for the decreased Gli1+ progeny in the
subchondral bone.

Gli1+ cells at the superficial layers of the condylar cartilage
increased at 1 month and decreased at 3 months post-induction.
This behavior is similar to that of Gli1+ cells in the upper layers of
the growth plate but different from that of Gli1+ cells at the
articular cartilage surface of the femur. Such variation is probably
related to differences in the biological characteristics of condylar
and epiphyseal cartilages. Condylar cartilage functions as an
articular cartilage and a growth site, unlike femurs, which

consist of a secondary ossification center at each apical end
(Delatte et al., 2004). The longitudinal thickness of the
condylar cartilage decreases with age (Kurio et al., 2018).
Therefore, we speculated that the decrease in Gli1+ cells at the
cartilage surface was related to the reduced cartilage thickness.

Gli1+ cells have been identified as MSCs/progenitor cells that
are responsible for tissue/organ development, homeostasis, and
injury repair in the craniofacial region. Gli1+ cells in the proximal
region are typical MSCs in the mouse incisor (Zhao et al., 2014;
Shi et al., 2019). These stem cells surround the neurovascular
bundle and contribute to nearly all odontoblasts and dental pulp
cells by supporting homeostasis and dentin regeneration (Chen
et al., 2020). Zhao et al. revealed that Gli1+ cells within the suture
mesenchyme as a main MSC population support craniofacial
bone turnover and injury repair (Zhao et al., 2015). Yu et al.
(2021) used a modified GelMA combined with Gli1+ MSCs and
successfully regenerated functional cranial sutures that could
correct skull deformities and rescue neurocognitive behavior
deficits in Twist1 ± craniosynostosis mice. In the present
study, we uncovered a previously unknown population of
Gli1+ cells at the chondro-osseous junction functioning as
osteogenic progenitors in the condyle and contributing to
bone formation during PN development and fracture repair.
Increased tdTomato signals were also observed in the cartilage
during fracture repair. The fibrous superficial zone has been
identified as a niche harboring fibrocartilage stem cells
(Embree et al., 2016). Therefore, we could not exclude the
possibility that Gli1+ cells at the superficial layers may be
activated and differentiated into osteoblasts and/or
chondrocytes during fracture repair. Besides, we found that
Gli1+ cells at the chondro-osseous junction gave rise to an
osteoblast lineage during condylar remodeling. Condylar
cartilage, also called secondary cartilage, could be
distinguished from primary epiphyseal cartilage and is capable
of adaptive remodeling in response to external stimuli. Therefore,
these Gli1+ cells provide a potential target that could promote
condylar growth even beyond natural growth.

Wnt signaling plays a critical role in bone formation and
remodeling (Houschyar et al., 2018). Conditionally deleted β-
catenin in Cxcl12 + bone marrow stromal cells results in
remarkable reductions in bone volume and bone mineral
density in the injured cortical bone compared with control
mice (Matsushita et al., 2020). Blocking Wnt ligands from the
osteoblastic lineage causes defects in bone development, while
enhancing Wnt signaling by addition of Wnt-3a promotes
fracture healing due to the increased proliferation and
differentiation of skeletal stem/progenitor cells (Minear et al.,
2010). We sorted the Gli1+ cells and cultured them in vitro. The
cells exhibited self-renewal, colony-forming, and osteogenic
differentiation capacities. However, proliferation and
differentiation were significantly downregulated when Wnt
signaling was inhibited. Thus, Wnt/β-catenin signaling may
mediate the osteogenesis of Gli1+ cells.

In summary, we have uncovered a population of osteogenic
progenitors that could be labeled Gli1 at the mandibular condyle.
These Gli1+ cells reside at the chondro-osseous junction
immediately beneath the cartilage. Gli1+ progenitors
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contribute to the osteoblast lineage during condylar PN
development, homeostasis, and fracture repair. Wnt/β-catenin
signaling may be a crucial driving force for the osteogenic
differentiation of Gli1+ cells. Our study provides a potential
target that could promote condylar growth and fracture healing.
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