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Abstract 

Background: Recently, there has been considerable innovation in artificial intelligence (AI) for healthcare. Convolu-
tional neural networks (CNNs) show excellent object detection and classification performance. This study assessed the 
accuracy of an artificial intelligence (AI) application for the detection of marginal bone loss on periapical radiographs.

Methods: A Faster region-based convolutional neural network (R-CNN) was trained. Overall, 1670 periapical radio-
graphic images were divided into training (n = 1370), validation (n = 150), and test (n = 150) datasets. The system was 
evaluated in terms of sensitivity, specificity, the mistake diagnostic rate, the omission diagnostic rate, and the positive 
predictive value. Kappa (κ) statistics were compared between the system and dental clinicians.

Results: Evaluation metrics of AI system is equal to resident dentist. The agreement between the AI system and 
expert is moderate to substantial (κ = 0.547 and 0.568 for bone loss sites and bone loss implants, respectively) for 
detecting marginal bone loss around dental implants.

Conclusions: This AI system based on Faster R-CNN analysis of periapical radiographs is a highly promising auxiliary 
diagnostic tool for peri-implant bone loss detection.
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Introduction
Dental implants are important for restoring biological 
function in patients with missing teeth [1, 2] and have 
become increasingly popular since the 1980s [3]. Moni-
toring and maintenance are critical for long-term stabil-
ity after implantation [4]. Marginal bone resorption is 
an important parameter that should be monitored. Bone 
loss of < 1.5 mm at 1-year post-loading is generally con-
sidered acceptable, followed by the loss of 0.2 mm annu-
ally thereafter [5, 6]. In cases where bone loss exceeds 
this amount, careful investigation is needed, including in 

cases showing gradual loss after osseointegration. Bone 
loss is initiated and maintained by iatrogenic factors or 
local conditions (e.g. occlusal trauma, implant factors, 
prosthetic restorations, etc.) [5, 7, 8]. Bone loss can be 
classified into late and additional types [9]. By monitor-
ing marginal bone resorption, early changes in clini-
cal factors can be identified. When additional bone loss 
is observed along with peri-implant connective tissue 
inflammation (i.e. bleeding and/or suppuration), a diag-
nosis of peri-implantitis is made [10]. This requires treat-
ment and oral health education for the patient.

Bone loss is usually evaluated on radiographs. A 
difference in measurements between examiners of 
approximately 1–2  mm is considered to reflect mean-
ingful interexaminer variation [11]. For general practi-
tioners, evaluating marginal bone loss around implants 
can be difficult. In clinical practice, detection of the 
peri-implant bone level relies on imaging findings. 
Commonly used imaging modalities include cone-beam 
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computed tomography, panoramic radiography, and 
periapical radiography. Cone-beam computed tomog-
raphy can depict the three-dimensional relationship 
between a dental implant and the surrounding alveolar 
bone, and studies have demonstrated robust accuracy 
of this modality for the detection of peri-implant bone 
defects [12, 13]. Other studies have sought to identify 
the bone condition around implants using periapical 
radiographs [14, 15]. Two-dimensional radiographic 
images are widely used in clinical practice because of 
their low cost and radiation dose; thus, bone defects are 
commonly measured on conventional periapical radio-
graphs. Assessment of the peri-implant marginal bone 
level on conventional periapical radiographs is gener-
ally difficult because the three-dimensional bone shape 
is represented on a two-dimensional image. Therefore, 
the boundaries of the bone around the implant, as well 
as the buccal and lingual bone heights, should be deter-
mined by experienced clinicians [16]. Inexperienced 
clinicians may make diagnostic errors and false diagno-
ses according to clinical studies on learning curve [17]. 
Implant restoration is an increasingly popular proce-
dure, but follow-up thereof can involve a considerable 
amount of clinical time and effort. Furthermore, inter-
pretations of radiographs tend to vary among observ-
ers. Automated systems for reading and analysing 
periapical radiographs of dental implants may help to 
address these issues.

Recently, there has been considerable innovation in 
artificial intelligence (AI) for healthcare, which can also 
aid digital dentistry and telemedicine [18]. Convolutional 
neural networks (CNNs) show excellent object detection 
and classification performance [19]. Many studies based 
on CNNs have been conducted in the field of dentistry 
[20, 21], for tooth numbering [22] and analysis of dental 
caries [23], osteoporosis [24], periodontal bone loss [25], 
submerged primary teeth [26] and dental implants [27–
29]. CNNs learn directly from raw input data and clas-
sify images without the requirement for manual feature 
extraction. Region-based convolutional neural networks 
(R-CNNs) have been developed for object detection 
tasks, whereby target objects (regions of interest) are 
automatically identified and annotated [30–33]. Sub-
sequently, the R-CNN was upgraded to Faster R-CNN, 
which is more efficient. Based on Faster R-CNN, the 
Mask R-CNN method was developed; this can detect 
targets in images and provides high-quality segmenta-
tion results [34]. To our knowledge, few studies have used 
Faster R-CNN for detection of marginal bone loss around 
dental implants on periapical radiographs [28].

The purpose of this study was to develop an auto-
mated system for identifying marginal bone loss around 
dental implants in periapical radiographs using a deep 

learning-based object detection method, and then to 
investigate the accuracy of the system.

Materials and methods
Data collection and annotation
This study was approved by the bioethics committee 
of Peking University School and Hospital of Stomatol-
ogy (PKUSSIRB-201837103). The study was conducted 
in accordance with institutional ethical guidelines. The 
data are anonymous, and the requirement for informed 
consent was therefore waived. In total, 2500 digital peri-
apical radiographs of bone-level implants were collected 
from Peking University School and Hospital of Stoma-
tology. The inclusion criteria were as follows: periapical 
radiographs of dental implants, appropriate radiation 
exposure, and radiographs of dental implants acquired 
in parallel. The exclusion criteria were as follows: exces-
sively bright or dark images precluding distinguishment 
of marginal bone around dental implants, severely dis-
torted images of dental implants, and/or graft material 
hindering observation of the alveolar bone [28]. Each 
digital radiograph was exported with a resolution of 96 
dpi and size of approximately 300–500 × 300–400 pix-
els. Each radiograph was then rotated so that the implant 
was perpendicular to the horizontal plane and saved in 
JPG format image file with a unique identification code 
as a component of the primary dataset. All patient infor-
mation (e.g. name, sex, and age) was removed from the 
images according to our previous experimental investiga-
tions [20, 22]. An experienced dentist (> 5 years of clini-
cal experience) assessed the images for marginal bone 
loss around the dental implants. Overall, 835 images with 
marginal bone loss around the implants were detected 
and classified into the case group. The control group was 
then formed from 835 randomly selected radiographs 
from the primary dataset without marginal bone loss 
around the implants.

This study used a balanced dataset [26]. Images from 
the case and control group datasets were randomly 
assigned to one of three datasets: a training set of 1,370 
images, a validation set of 150 images, and a test set of 
150 images. The training and validation datasets were 
used to train a Faster R-CNN [32, 33]. Subsequently, 
the dentist with more than 5 years of clinical experience 
(reference standard) drew a rectangular bounding box 
around the dental implants and crowns, and around areas 
of marginal bone loss surrounding implants (ground 
truth bounding box for the case group). Another oral and 
maxillofacial radiologist confirmed the initial bounding 
box positions. During annotation, the clinicians drew the 
smallest possible bounding box around each area of mar-
ginal bone loss surrounding the implants in each image 
(Fig. 1).
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For platform-matched implants, the bottom of the 
implant neck near the most coronal thread was consid-
ered as the top of the implant [7]. For platform-switched 
implants, the most coronal edge was considered as the 
top of the implant [14]. The apical “keypoints” were the 
first contact points of the bone and implant. Coordi-
nates in the image were set in accordance with the dis-
tance from the top-left corner. The bounding box was 
described in terms of its top left and bottom right cor-
ners (xmin, ymin; xmax, ymax).

Training and validation of the Faster R‑CNN
An object detection package [33] for TensorFlow was 
used for object detection. Inception Resnet v2 (Atrous 
version), a state-of-the-art object detector, was used as 
the neural network model. The model was trained using 
a PC with a Quadro RTX 8000 graphics processing unit 
(NVIDIA, USA), 48 GB memory and 4608 CUDA cores. 
The backend algorithms were executed using TensorFlow 
(version 1.13.1) running on the Ubuntu 18.04 operating 
system.

A set of 1370 annotated X-ray images were used to train 
the Faster R-CNN for object recognition. There were 
60,000 iterations and an initial learning rate of 0.0003, 
which was reduced to 0.00006 after 30,000 iterations.

To rapidly determine model performance, the aver-
age precision [35] (AP; i.e., the area under the curve) of 
the implant and marginal bone loss lesion areas, as well 
as the mean average precision (mAP) of an intersection 
over unit (IoU) of > 0.5, were calculated using the follow-
ing equation:

where  Areapred and  Areagt represent the predicted area 
of the bounding box and the ground truth bounding box, 
respectively. The IoU threshold was set at 0.5 because 
this value is commonly used in studies of object detec-
tion [36]. The mAP was calculated by determining the 
mean AP across all classes. Higher values indicated bet-
ter learning system performance.

Diagnostic performance analysis
The diagnostic accuracy of the model was determined by 
comparison with assessments performed by dentists. In 
total, 150 radiographic images were analysed by three den-
tists: a resident dentist (Dr1), an MD student with 2 years 
of experience (Dr2), and an experienced dentist (5 years of 
clinical experience; reference standard). Observers (Dr1 
and Dr2) were asked to indicate areas of pathology and 
potential bone loss around implants on the images. The 
classification and detection performance of the AI system 
and observers was evaluated by comparison with the refer-
ence standard.

A confusion matrix (Table 1) summarising the predicted 
and actual results was used to determine the accuracy of 
the model. The sensitivity, specificity, mistake diagnostic 
rate, omission rate, and positive predictive value were cal-
culated as follows:

IOU =
Areapred ∩ Areagt

Areapred ∪ Areagt

Sensitivity : Se =
a

a+ b

Fig. 1 “Keypoints” for marginal bone loss assessment. a platform switch implant; b platform match implant. Red points indicate coronal keypoints; 
green points indicate apical keypoints. For platform-switched implants, the coronal keypoints were located on top of each implant. For bone-level 
platform-matched implants, the coronal keypoints were located on the bottom of the implant neck. The apical keypoints comprised the first point 
of contact between the bone and implant. The yellow bounding boxes denote areas of marginal bone loss
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Interobserver agreement with respect to the presence/
absence of marginal bone loss around implants was cal-
culated using the kappa (κ) statistic in SPSS software (24; 
SPSS Inc., USA). The κ values were classified as follows: 
0, poor; 0.00–0.20, weak; 0.21–0.40, fair; 0.41–0.60, mod-
erate; 0.61–0.80, substantial; and 0.81–1.00, almost per-
fect agreement [37].

Statistical analysis
The training and test datasets were used to create opti-
mal weights for a deep CNN model. A confusion matrix 
was used to calculate the accuracy of the model, as stated 
above. The sensitivity, specificity, mistake diagnostic rate, 
omission diagnostic rate, and positive predictive value 
of the deep CNN model were calculated based on its 
performance with the test dataset, using a TensorFlow 
framework and Python. Interobserver agreement regard-
ing the presence of marginal bone loss was given by the κ 
statistic, calculated in SPSS as also stated above.

Results
The AP for implants approached 0.99 after 10,000 itera-
tions (Fig.  2a), indicating that the implants could be 
detected with high accuracy. The AP for marginal bone 
loss gradually increased with an increasing number 
of iterations. When the number of iterations reached 
30,000, the AP value fluctuated slightly; it eventually sta-
bilised at 0.47 after 60,000 iterations (Fig. 2b). The mAP 
of implants and marginal bone loss was 0.73 (Fig. 2c).

Table  2 provides information on the implants in the 
training and test datasets. As shown in Fig. 3, although 
some diagnoses were missed, the bone loss area 

Specificity:Sp =
d

c + d

Mistake diagnostic rate : α̂ = 1− Sp =
c

c + d

Omission diagnostic rate : β̂ = 1− Se =
b

a+ b

Positive predictive value : PV+ =
a

a+ c

detected by Faster R-CNN was generally similar to the 
ground truth bounding box. With increasing severity of 
bone loss, the Faster R-CNN model and observer anno-
tations converged.

Marginal bone resorption was assessed on the basis 
of single implants, as well as their mesial and distal 
sites. Table 3 compares the performance of the AI sys-
tem and observers. For bone loss around implants and 
lesion sites, the deep CNN had positive predictive val-
ues of 81% and 87%, sensitivities of 67% and 75%, and 
specificities of 87% and 83%, respectively. The values 
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Fig. 2 The average precision [35] (AP; i.e., the area under the curve) 
of the implant and marginal bone loss lesion areas, as well as the 
mean average precision (mAP) of an intersection over unit (IoU) 
of > 0.5, were calculated. a average precision of implant classification; 
b average precision of marginal bone loss lesion classification; c mean 
average precision

Table 2 Implant classifications for the training and test datasets

implant‑abutment 
connection type

Training data Test data

Platform-switched 794 85

Platform-matched 875 111

Table 1 Confusion matrix

Actual situation Predicted situation

1 0

1 True-positive (a) False-negative (b)

0 False-positive (c) True-negative (d)
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Fig. 3 Example periapical radiographs showing areas of bone loss detected by neural networks. Images were manually annotated by an 
experienced dentist. A platform-matched implants. B platform-switched implants
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for these parameters showed considerable variation 
between the observers.

Notably, there was fair interobserver agreement 
(κ = 0.399 and 0.383 for bone loss sites and implants, 
respectively) between the MD student and expert den-
tist. However, the agreement between the AI system and 
expert was moderate to substantial (κ = 0.547 and 0.568 
for bone loss sites and implants, respectively). Finally, 
there was moderate agreement (κ = 0.555 and 0.544 for 
bone loss sites and implants, respectively) between the 
resident dentist and expert dentist (Table 4).

Discussion
AI technologies can be clinically evaluated in terms 
of diagnostic performance, patient outcomes, and the 
cost–benefit ratio [38, 39]. For many years, machine 
predictions were inferior to those of humans in terms 
of object detection and instance segmentation, and 
extensive comparisons of AI and human observers are 
lacking. In this study, implants were detected with high 
accuracy by the AI system. Marginal bone loss detec-
tion is often challenging, so several metrics of diag-
nostic performance were used for model evaluation in 
this study. Specificity represents the probability that 
a marginal bone loss bounding box actually contains 
the lesion area, while sensitivity represents the prob-
ability that an image is correctly labelled as “disease”. 
The κ statistic test is useful for evaluating consistency 
between a new diagnostic method and the gold stand-
ard; it can also be used to evaluate consistency between 

two clinicians in terms of their diagnostic assessments 
of specific patients. The above-described metrics allow 
for model evaluation and comparison among clini-
cians. The CNN model used in this study performed 
similarly to the resident dentist, but less well than the 
experienced dentist; however, overall we conclude that 
the CNN model may facilitate the detection of marginal 
bone loss around implants.

The impact of implant-supported prosthesis type on 
peri-implant bone loss and peri-implantitis remains 
unclear [7, 40]. The differential effects on loss of mar-
ginal bone between platform-matched and -switched 
implants has received increasing attention in recent 
years; a meta-analysis by Chrcanovic et  al. [41] sug-
gested that significantly less marginal bone loss occurs 
with the latter type of implant. Dentists must dis-
tinguish the abutment-implant connection type and 
appropriate reference points when analysing radio-
graphs for marginal bone loss around dental implants. 
Platform-switched level implants should maintain 
marginal bone stability at a level equivalent to the top 
of the implant [14]. Platform-matched implants have 
a smooth neck, and the marginal bone should be sta-
bilised at the junction between the smooth and rough 
implant surfaces [42]. In this study, we divided the mar-
ginal bone loss training data according to the implant-
abutment connection type, and the bone resorption 
areas automatically identified by the CNN were gen-
erally consistent with these classifications (Fig.  3). 
These findings differed from those of Cha et  al. [28], 
whose dataset included various implants with differ-
ent implant-abutment junctions. In that study, the most 
coronal thread of the implant was used as a threshold 
position.

According to the VIII European Workshop on Peri-
odontology [43], radiographs of implants are recom-
mended after physiological remodelling (generally at 
the time of prosthesis fitting) to assess changes in the 
level of crestal bone. These baseline radiographs were 
unavailable for some patients in our dataset. Exposure 

Table 3 Performance comparison between the AI system and human observers

AI = artificial intelligence system; Dr1 = MD student; Dr2 = resident dentist

Metrics Bone loss implants Bone loss sites

AI (%) Dr1 (%) Dr2 (%) AI (%) Dr1 (%) Dr2 (%)

Sensitivity 67 93 62 75 96 68

Specificity 87 64 77 83 55 72

Mistake diagnostic rate 13 36 23 17 45 28

Omission diagnostic rate 33 7 38 25 4 32

Positive predictive value 81 69 70 87 76 78

Table 4 Interobserver agreement data

Dr1 = MD student; Dr2 = resident dentist; RS = reference standard (experienced 
dentist)

Comparison 
classification

System 
versus RS 
(κ)

Dr1 versus RS (κ) Dr2 versus RS (κ)

Bone loss sites 0.547 0.555 0.399

Bone loss implants 0.568 0.544 0.383
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of the rough implant surface can serve as an indicator 
of bone resorption around the implant. In this study, 
bounding boxes were used for qualitative detection of 
marginal bone loss (Fig.  2). The Faster R-CNN model 
was used in this study for feature detection and clas-
sification, while Cha et  al. [28] used a Mask R-CNN 
model that detects and classifies targets by drawing tar-
get frames, and then segments targets at the pixel level. 
However, the cost of training is considerable because a 
set of keypoints must be precisely annotated for model 
training; also, specialised equipment is needed for 
training [34].

Although AI is a rapidly developing technology, our 
research nevertheless provides important baseline data 
for future studies. However, this study had some limita-
tions. Firstly, for assessment of the real-world clinical 
performance of high-dimensional AI algorithms that 
analyse medical images using deep learning, external 
validation studies are needed [44–46]. This study used 
a balanced database, but the incidence of bone resorp-
tion at implant margins was low. Second, because sub-
tle changes in marginal bone morphology are difficult 
to evaluate, standardised radiographs produced via the 
paralleling technique have important roles in monitor-
ing marginal bone levels around endosseous implants 
[42]. Model performance may be improved by the par-
allel projection method.

Conclusions
The Faster R-CNN model used in this study performed 
similarly to the resident dentist, but less well than 
the experienced dentist; overall we conclude that our 
Faster R-CNN could detect peri-implant bone loss on 
periapical radiographs and may facilitate the develop-
ment of accurate diagnostic tools. In the future, model 
performance may be improved by more high qualified 
training images.
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