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Abstract

Background: The potential association between Candida albicans (C. albicans) infec-

tion and oral squamous cell carcinoma (OSCC) has been noticed for a long time.

Programmed death ligand-1 (PD-L1) is a key molecule of tumor immune escape and

tumor progression. This study aimed to explore whether C. albicans could influence

PD-L1 expression in OSCC in vitro and in mouse model.

Methods: OSCC cell lines (Cal27 and HN6) were infected with C. albicans for 2 and

24 h, then PD-L1 expression was detected by quantitative real-time polymerase

chain reaction (RT-qPCR), western blot (WB), and flow cytometry (FCM). To identify

the underlying mechanisms, PD-L1 expression in OSCC cells treated with heat-

inactivated C. albicans or with biofilm metabolites derived from C. albicans were

explored respectively. Meanwhile, signaling pathways involved in PD-L1 regulation

were explored by RT-qPCR, and the candidate genes were verified by WB. More-

over, an OSCC mouse model induced by 4-nitroquinoline-1 oxide was used to further

explore the role of C. albicans infection in PD-L1 expression in vivo.

Results: C. albicans and heat-inactivated C. albicans upregulated the PD-L1 expres-

sion in Cal27 and HN6 cells. Various signaling pathways involved in PD-L1 regulation

were influenced by C. albicans infection. Among them, TLR2/MyD88 and TLR2/NF-

κB pathways might participate in this process. Furthermore, PD-L1 expression in oral

mucosa epithelium was upregulated by C. albicans infection in both normal and OSCC

mice.

Conclusions: This study suggests that C. albicans could induce upregulation of PD-L1

in OSCC in vitro and in mouse model, which might due to the activation of TLR2/

MyD88 and TLR2/NF-κB pathways.
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1 | INTRODUCTION

Increasing attention has been focused on the relationship between

microorganisms and cancer. It was reported that about 13% of global

cancer incidence was attributable to microorganisms' infection.1

Microbiota, the important factor existing in tumor microenvironment

(TME), may participate in the occurrence, development, responsive-

ness to therapeutics, and complications of cancer.2 However, the

ways in which various microorganisms contribute to carcinogenesis

are complex and remain to be further investigated.
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Candida albicans (C. albicans), the most common fungus inhabiting

in human oral cavity and is carried by approximately 80% of general

population,3 has shown an association with oral squamous cell carci-

noma (OSCC),4 which is the most common type and accounts for

more than 90% of oral cancer.5 Until now, there exists a debate about

whether oral candidiasis should be classified as oral potentially malig-

nant disorders (OPMDs). In the 4th edition of WHO classification on

head and neck tumors, “chronic candidiasis” was included in the

OPMDs.6 Nevertheless, it was considered that the evidence is still

insufficient to support the malignant potential of oral candidiasis.7

Thus, it is of great significance to demonstrate whether C. albicans

infection participate in the OSCC progression, as well as to explore

the underlying carcinogenic mechanisms of C. albicans.

Programmed death ligand-1 (PD-L1, B7-H1, CD274)/programmed

death receptor (PD-1) pathway is a key mechanism of immune escape by

cancers and usually contributes to T cells' exhaustion and immunosup-

pression in TME.8 There is evidence indicated that the upregulation of

PD-L1 in oral epithelial cell might be associated with the progression of

OPMDs and OSCC.9 Substantial expression of PD-L1 could be observed

in the keratinocytes of oral lichen planus (OLP)10 and oral leukoplakia

(OLK),11 and the increased PD-L1 level was positively correlated with the

malignant transformation of OLK within 5 years.12 In addition, some stud-

ies discussing the role of immune checkpoint biomarkers in OSCC also

inferred that the expression of PD-L1 in OSCC samples was correlated

with increased progression and decreased survival rates, though more

precise evidence is needed.9,13,14

Previous studies showed that the infection of C. albicans could

induce upregulation of PD-L1 on T cells and natural killer cells.15,16

Besides, the pathogen-associated molecular patterns (PAMPs) and

candidalysin of C. albicans could activate Toll-like receptors (TLR2/

TLR4) on innate immune cells17 and epidermal growth factor receptor

(EGFR) on oral epithelial cells,18 respectively. Coincidentally, both

TLR2/TLR4 and EGFR are involved in the regulation of PD-L1 expres-

sion in tumor.19 However, whether C. albicans infection influences

PD-L1 expression in OSCC cells remains unrevealed.

Our previous work revealed that 20.83% of chronic hyperplastic

candidiasis (CHC) patients had varying degrees of epithelial dysplasia

and 4.17% had malignant transformation.20 Considering the potential

association between C. albicans and OSCC, as well as the abilities of

C. albicans to activate some signals involved in PD-L1 regulation, it is

worthy of research to investigate the role of C. albicans in regulating

PD-L1 expression in OSCC. In this study, we explored the expression

of PD-L1 in OSCC cell lines and OSCC mice during C. albicans infec-

tion. In addition, the mechanisms and signaling pathways involved in

this process were also investigated.

2 | MATERIALS AND METHODS

2.1 | Cell culture conditions

The human OSCC cell lines (Cal27 and HN6) were obtained from

Peking University School of Stomatology. OSCC cell lines were

cultured in high-glucose Dulbecco's Modified Eagle's Medium

(DMEM) (HyClone) supplemented with 10% fetal bovine serum

(FBS) (HyClone) and 1% penicillin–streptomycin (Invitrogen) at

37�C in a 5% CO2 incubator. Prior to stimulation, the cells were

serum-starved for 24 h, and all experiments were carried out in

serum-free DMEM.

2.2 | C. albicans growth conditions, heat-
inactivated C. albicans, and biofilm metabolites

C. albicans strain ATCC 90028 and SC5314 were grown at 37�C in

Yeast Extract Peptone Dextrose (YPD) medium (Solarbio) overnight,

respectively. Cultures were washed in sterile Phosphate Buffer Solu-

tion (PBS) (HyClone) and adjusted to the required density. Heat-

inactivated C. albicans was performed by incubation for 30 min at

100�C,21 and confirmed by plating them on Sabouraud dextrose agar

and incubating at 37�C for 24 h. The metabolites of C. albicans biofilm

were obtained as previously described22: yeast cell suspension was

placed into six-well plates and incubated for 90 min (adhesion phase)

at 37�C. Then, the medium was replaced by RPMI-1640 culture

medium (HyClone) and incubated at 37�C for 24 h. Finally, the sus-

pension was filtered with a low-protein binding filter (SFCA 0.22 mm,

Corning).

2.3 | Infection and stimulation

The Cal27 and HN6 cells were seeded into 60-mm cell culture dish

(Corning-Costar) at 2 � 106 cells per dish and grown to 80% conflu-

ence. After being serum-starved for 24 h, the cells were infected with

C. albicans with multiplicity of infection (MOI) of 0.005 for 24 h or

MOI of 5 for 2 h, as previously reported.23 Alternatively, cells were

treated with heat-inactivated C. albicans (MOI = 5) or biofilm metabo-

lites for 24 h. After infection or stimulation, the medium was dis-

carded, and cells were washed three times with PBS.

2.4 | Western blot (WB) analysis

Cells were collected and lysed with radioimmunoprecipitation (RIPA)-

buffer (Thermo Fisher Scientific) added with protease and phospha-

tase inhibitors (Huaxingbio Science). After centrifuged at 4�C,

12 000 rpm for 15 min, the protein supernatant was collected and its

concentration was determined by bicinchoninic acid (BCA) assays

(Thermo Fisher Scientific). Equal amounts of protein per lane were

separated by 10% SDS-PAGE and transferred onto a polyvinylidene

difluoride (PVDF) membrane (Sigma-Aldrich). The membranes were

blocked with 5% nonfat milk for 2 h. Then, the membranes were incu-

bated with primary antibodies overnight at 4�C using 1:2000-diluted

antibodies against PD-L1 (ab205921, Abcam), phosphor-EGFR

(ab40815, Abcam), EGFR (ab52894, Abcam), phosphor-STAT1

(ab109457, Abcam), STAT1 (ab109320, Abcam), phosphor-JAK2
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(ab32101, Abcam), JAK2 (ab108596, Abcam), TLR2 (ab68159,

Abcam), MyD88 (ab133739, Abcam), NF-κB (P65) (ab32536, Abcam),

and β-actin (20536-1-AP, Proteintech). After being washed three

times with Tris-buffered saline containing Tween (TBST) buffer, the

membranes were incubated with horseradish peroxidase-conjugated

anti-rabbit secondary antibodies (1:10 000, SA00001-2, Proteintech)

for 1 h at room temperature. After being washed three times,

the proteins were visualized with enhanced chemiluminescence

reagent.

2.5 | Quantitative real-time polymerase chain
reaction (RT-qPCR)

Total RNA was extracted using Trizol Reagent (Invitrogen). The RNA

concentration was determined with the Nanodrop 8000 (Thermo

Fisher Scientific). ABScript II Reverse Transcriptase (ABclonal) was

used to reverse-transcribe total RNA into cDNA according to the

manufacturer's instructions. The amplification was performed in tripli-

cate using Universal SYBR Green Fast qPCR Mix (ABclonal). The

primer (Sangon Biotech) sequences are shown in Supplementary

Table S1. The relative gene expression was calculated using 2�ΔΔCt

method and normalized to GAPDH mRNA.

2.6 | Flow cytometry (FCM)

A total of 1 � 106 cells were harvested and incubated with PE-

conjugated PD-L1 (329705, Biolegend) at 4�C for 30 min. After

washed twice, the cells were subjected to FCM analyzes using

FACSDiva Software (BD Bioscience). The mean fluorescence intensi-

ties (MFI) of the PD-L1 expression on cells were analyzed by

FlowJo (v. 10).

2.7 | Animal experiments

The animal experiments were reviewed and approved by the Biomedi-

cal Ethics Committee of Peking University (LA2021388). C57BL/6N

male mice (6–8 weeks) were maintained under specific pathogen-free

(SPF) conditions. For normal mouse infection experiment, the normal

mice were randomly placed into infection and control groups (n = 3/

group). For OSCC mouse infection experiment, OSCC model was

developed using the carcinogen 4-nitroquinoline 1-oxide (4-NQO)

(Abcam) in the drinking water (100 μg/ml) for 18 weeks as previous

studies,24 then the OSCC mice were randomly divided into two

groups: infection group (n = 6) and control group (n = 6). For infection

group, the mice were anesthetized, and a cotton swab soaked with

200 μl of C. albicans suspension (6 � 108 cfu/ml) was applied to the

dorsum of tongue, while the mice in non-infection group were applied

with a cotton swab soaked with medium alone, once every 3 days.

The mice were euthanized after infection for 4 weeks (OSCC mice) or

8 weeks (normal mice). The tongues of mice were excised and cut into

halves, half of the tongues were prepared for histology staining and

the other half for fluorescence staining.

2.8 | Histology and immunofluorescence staining

For histology analysis, tongues were fixed in 4% paraformaldehyde

for 24 h. After dehydration and paraffin embedding, the tongues were

cut into 5-μm sections and stained with hematoxylin and eosin (H&E).

For PD-L1 expression analysis, tongues were fixed in 4% paraformal-

dehyde, followed by dehydrated in 30% sucrose. Then, 20-μm-thick

frozen sections were blocked with 3% goat serum albumin and incu-

bated with rabbit anti-PD-L1 (1:200, ab213480, Abcam) overnight at

4�C. After incubated with goat anti-rabbit fluorescein isothiocyanate

(FITC, 1:200, ZSGB-BIO) for 1 h at room temperature, nuclei were

counterstained with 40,6-diamidino-2-phenylindole (DAPI) (Solarbio).

Fluorescence images were taken using a fluorescence microscope

(Olympus Co.).

2.9 | Statistics

GraphPad Prism (v. 8.0) was used for statistical analyses. The experi-

ments of WB and FCM were repeated two times, and the experiments

of RT-qPCR were repeated three times. Data were presented as

mean ± standard deviation (SD). Student's two-tailed t test was used

to determine the statistical relevance between groups. A p value

<0.05 was indicative of statistical significance.

3 | RESULTS

3.1 | C. albicans upregulated PD-L1 expression
in OSCC cell lines

After infected with C. albicans for 2 and 24 h, the total PD-L1 protein

levels in Cal27 cells were upregulated (Figure 1A,B). In addition, the

MFI of PD-L1 on membrane of infected Cal27 cells was also higher

than that on non-infected cells, and the prolonged infection could

induce more remarkable PD-L1 expression (Figure 1A,B). Similarly,

when compared with the non-infected cells, the total PD-L1 protein

was upregulated in the HN6 cells infected with C. albicans for 2 and

24 h, but the MFI of PD-L1 on membrane was upregulated only in

24 h (Figure 1C,D). What is more, C. albicans infection upregulated

the mRNA levels of PD-L1 in Cal27 (p = 0.0080) and NH6

(p = 0.0271) cells after infected for 24 h (Figure 1B,D).

3.2 | Heat-inactivated C. albicans enhanced PD-L1
expression in OSCC cell lines

When treated with heat-inactivated C. albicans for 24 h, the

mRNA, total protein, and membrane protein levels of PD-L1
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were increased in Cal27 cells (Figure 2A). A similar phenomenon

could be seen in HN6 cells treated with heat-inactivated

C. albicans for 24 h, except for membrane protein levels

(Figure 2C). However, when treated with biofilm metabolites

derived from C. albicans for 24 h, the total and membrane pro-

tein of PD-L1 were decreased in Cal27 cells (Figure 2B). In HN6

cells, though the membrane protein of PD-L1 was not changed,

the total protein was decreased after treated with biofilm metab-

olites for 24 h (Figure 2D).

3.3 | TLR2/MyD88 and TLR2/NF-κB signaling
pathways might participate in the PD-L1 upregulation
induced by C. albicans infection

In order to reveal the underlying mechanisms of PD-L1

upregulation in OSCC cell lines caused by C. albicans infection,

the expression profile of genes involved in PD-L1 regulation,

exhibited by Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, were explored by RT-qPCR. As shown in Figure 3A

F IGURE 1 Candida albicans infection upregulated PD-L1 mRNA and protein levels in OSCC cell lines. (A) The PD-L1 mRNA and protein levels
in Cal27 cells infected with C. albicans for 2 h. (B) The PD-L1 mRNA and protein levels in Cal27 cells infected with C. albicans for 24 h. (C) The
PD-L1 mRNA and protein levels in HN6 cells infected with C. albicans for 2 h. (D) The PD-L1 mRNA and protein levels in HN6 cells infected with
C. albicans for 24 h. In each sub-figure, the top left panel represents the WB results (n = 2), the top right represents the RT-qPCR results (n = 3),
the bottom left represents the histogram of PD-L1 surface expression measured by FCM (n = 2), the bottom right represents the relative fold of
mean fluorescence intensity (MFI) for PD-L1 surface expression measured by FCM (n = 2). *p < 0.05, **p < 0.01, ***p < 0.001
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(the corresponding histogram was presented in Figure S1), vari-

ous genes associated with PD-L1 regulation had been influenced

by C. albicans infection in the two OSCC cell lines. When Cal27

cells infected with C. albicans for 24 h, the mRNA levels of EGFR,

MAPK1, MyD88 and so on were upregulated. When HN6 cells

infected with C. albicans for 2 h and 24 h, the mRNA levels of

EGFR, JAK2, and TLR2, as well as JAK2, STAT1, and MyD88 were

upregulated, respectively. To summarize, the EGFR and TLR2 sig-

naling pathways were upregulated in both cell lines during PD-

L1 upregulation caused by C. albicans infection. Then, a Venn

network was created to further show the common signaling

pathways changed in both cell lines. As shown in Figure 3B,

EGFR/MAPK, JAK2/STAT1, TLR2/MyD88, and PTEN were changed

in both Cal27 and HN6 cells during C. albicans infection. Further,

considering the importance of heat-inactivated C. albicans in reg-

ulating PD-L1 expression, the mRNA levels of EGFR/MAPK,

JAK2/STAT1, TLR2/MyD88 in OSCC cell lines treated with heat-

inactivated C. albicans were measured. We found that MAPK1,

JAK2, TLR2, and NFATC1 (downstream signal of MyD88) were

upregulated in Cal27, while JAK2 and TLR2 were upregulated in

F IGURE 2 Heat-inactivated Candida albicans, rather than biofilm metabolites derived from C. albicans, upregulated PD-L1 mRNA and protein
levels in OSCC cell lines. (A) The PD-L1 mRNA and protein levels in Cal27 cells treated with heat-inactivated C. albicans for 24 h. (B) The PD-L1
mRNA and protein levels in Cal27 cells treated with biofilm metabolites for 24 h. (C) The PD-L1 mRNA and protein levels in HN6 cells treated
with heat-inactivated C. albicans for 24 h. (D) The PD-L1 mRNA and protein levels in HN6 cells treated with biofilm metabolites for 24 h. In each
sub-figure, the top left panel represents the WB results (n = 2), the top right represents the RT-qPCR results (n = 3), the bottom left represents

the histogram of PD-L1 surface expression measured by FCM (n = 2), the bottom right represents the relative fold of mean fluorescence intensity
(MFI) for PD-L1 surface expression measured by FCM (n = 2). *p < 0.05, **p < 0.01, ***p < 0.001
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HN6 (Figure 3C). Finally, the protein levels involved in these sig-

naling pathways were also detected by WB, and the results

showed that pEGFR and pSTAT1 were down-regulated in both

Cal27 and HN6, while pJAK2, TLR2, MyD88 and NF-κB (down-

stream signal of TLR2) were upregulated in both cell lines

(Figure 3D). To sum up, TLR2 and its downstream signals,

MyD88 and NF-κB, might participate in the regulation of PD-L1

expression in Cal27 and HN6 cells caused by C. albicans

infection.

3.4 | C. albicans infection upregulated PD-L1
expression in both normal and OSCC mice

A 4-nitroquinoline-1 oxide-induced carcinogenesis mouse model was

constructed to explore the effect of C. albicans infection on PD-L1

expression in vivo (Figure 4A). As shown in the immunofluorescence

images (Figure 4B), C. albicans infection increased the PD-L1 expres-

sion in the tongue mucosa epithelium of both normal and OSCC mice.

Based on the histopathological results, C. albicans infection showed

the tendency to promote tumor progression in OSCC mice

(Figure 4C), but the definite conclusion should be validated in future

investigation through clinical experiments.

4 | DISCUSSION

PD-L1 over-expression has been discovered in various types of

human cancers including head and neck squamous cell carcinomas

(HNSCC) (Figure S2), which assists the tumors with evading

immune attack.25 The regulation of PD-L1 is involved in both

endogenous mechanisms and exogenous factors existing in

F IGURE 3 Signaling pathways involved in PD-L1 upregulation of OSCC cell lines caused by Candida albicans. (A) Heatmap of upstream signals
involved in PD-L1 regulation between OSCC cell lines infected with or without C. albicans, measured by RT-qPCR (n = 3). (B) Venn network of
the changed mRNA during C. albicans infection between Cal27 and HN6 cells (Drawing with an online software, http://www.ehbio.com/test/
venn/#/). (C) The mRNA levels of EGFR/MAPK1, JAK2/STAT1 and TLR2/MyD88 pathways in OSCC cell lines treated with or without heat-
inactivated C. albicans (n = 3). (D) The protein levels of EGFR, JAK2/STAT1, TLR2/MyD88, and TLR2/NF-κB pathways in OSCC cell lines treated

with or without heat-inactivated C. albicans (n = 2), EGFR (pEGFR), and STAT1 (pSTAT1) in Cal27 were from the same membrane, TLR2, MyD88,
and NF-κB in Cal27 were from the same membrane, JAK2 (pJAK2), MyD88, and NF-κB in HN6 were from the same membrane. *p < 0.05,
**p < 0.01, ***p < 0.001
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TME.19,26 As the dominant fungal species found in OSCC tissue,27

whether C. albicans influence PD-L1 expression in OSCC is

unknown. Here, we demonstrated the overexpression of PD-L1 in

OSCC cell lines and OSCC mice during C. albicans infection. It was

found that PD-L1 was upregulated by C. albicans and heat-

inactivated C. albicans in two OSCC cell lines (Cal27 and HN6).

Further, TLR2/MyD88 and TLR2/NF-κB pathways might partici-

pate in this process. This study is the first to address the effect of

C. albicans on PD-L1 regulation in OSCC, which might provide

insights into the carcinogenic mechanisms of C. albicans.

Microbiome is considered one of the important elements in

TME.28 Bacteria such as Porphyromanus gingivalis and Helicobacter

pylori have been proven to induce PD-L1 expression in oral epithelial

cells29 and gastric epithelial cells30 respectively, which may support

immune evasion of oral and gastric carcinomas. More interestingly, a

recent study demonstrated that PD-1 and PD-L1 expression modu-

lated by Fusobacterium nucleatum could enhance the efficacy of

PD-L1 blockade in colorectal cancer.31 However, there are rare

reports investigating the influence of Candida on PD-L1 expression in

OSCC. In our present study, PD-L1 in OSCC cell lines (HN6 and

Cal27) was upregulated by C. albicans. In addition, the PD-L1 expres-

sion in laryngeal squamous cell carcinoma cell (LSCC, HN4) and nor-

mal oral keratinocyte (HOK) was also elevated after C. albicans

infection (Figures S3 and S4). Since increased PD-L1 was reported to

be related with malignant transformation of OPMDs and pathological

grade of OSCC,11,12,32 C. albicans existing in TME may promote the

immune evasion of OSCC by enhancing PD-L1 expression.

Although the association between C. albicans infection and OSCC

progression has been noticed for a long time, their relationship

remains unclearly. Previous studies speculated that C. albicans might

induce cancer development by producing carcinogenic byproducts,

triggering chronic inflammation, and inducing Th17 response and

molecular mimicry.33 Our study might propose a novel potential

mechanism of C. albicans promoting OSCC, by assisting immune

F IGURE 4 Candida albicans infection upregulated PD-L1 expression in normal and OSCC mice. (A) Diagram of experimental protocol for
normal mice (left, n = 3 per group) and OSCC mice (right, n = 6 per group). (B) Representative immunofluorescence images of PD-L1 expression
in tongue lesions of normal mice infected with or without C. albicans for 8 weeks (left), and OSCC mice infected with or without C. albicans for
4 weeks (right). Scale bar = 100 μm. (C) Representative H&E sections of pathology, including normal mice infected with or without C. albicans for
8 weeks (left), and OSCC mice infected with or without C. albicans for 4 weeks (right). Scale bar = 100 μm or 50 μm
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escape. As shown in the mouse model, C. albicans infection promoted

the expression of PD-L1 in the tongue mucosa of normal and OSCC

mice. The OSCC mice infected with C. albicans exhibited the highest

level of PD-L1 expression, followed by OSCC mice without C. albicans

infection, normal mice infected with C. albicans, and normal mice with-

out C. albicans infection. Thus, it is proposed that C. albicans might

promote OSCC progression by upregulating PD-L1 expression in oral

epithelial and OSCC cells (Figure 5), which should be further validated

in the future investigation.

In order to explore the underlying mechanisms involved in PD-L1

upregulation caused by C. albicans, we investigated the effect of heat-

inactivated C. albicans and biofilm metabolites of C. albicans on induc-

ing PD-L1 expression. Intriguingly, inactivated C. albicans increased

PD-L1 expression in OSCC cells, rather than biofilm metabolites. Vari-

ous components on C. albicans cell wall can be recognized by pattern

recognition receptors on host cell surface.34 It has been reported that

PAMPs on C. albicans can activate the TLRs and JAK2/STATs path-

ways in host cells,34,35 which pathways are associated with PD-L1

regulation and were found changed during C. albicans infection in our

RT-qPCR results. Subsequently, we detected the protein levels of

TLR2 and JAK2/pJAK2 during heat-inactivated C. albicans treatment,

and found that both pJAK2 and TLR2 protein levels were elevated.

However, the pSTAT1 was decreased, while the MyD88 and NF-κB

were increased. That is to say, TLR2/MyD88 and TLR2/NF-κB might

participate in this process. In addition, previous study demonstrated

that human epithelial EGFR could be activated by C. albicans, mainly

by candidalysin secreted by its hypha form.18 EGFR and its down-

stream are also important signals in regulating PD-L1 expression in

tumor. However, pEGFR protein was reduced during inactivated

C. albicans treatment in our study. Even so, it is actually hard to rule

out the role of EGFR pathways in regulating PD-L1 expression in

OSCC cells during C. albicans infection. One of the reasons is that the

inactivated C. albicans explored in the present experiment may not be

able to secrete candidalysin.36 To summarize, C. albicans might

upregulate PD-L1 expression in OSCC cells partly via TLR2/MyD88

and TLR2/NF-κB pathways, while whether other pathways like JAK2/

STAT3 and EGFR, could participate in this process remain to be

explored.

Despite some valuable phenomena have been discovered in this

study, limitations should not be ignored. First, although some impor-

tant components of the signal pathways involved in PD-L1 regulation

were explored, other individual signal pathways may participate in

the PD-L1 expression influenced by C. albicans infection. Second, the

inactivated C. albicans was mainly explored in the present study, the

underlying mechanisms involved in PD-L1 regulation by hypha form

of C. albicans were not further explored. It is important to point out

that candidalysin secreted by hypha form is profoundly correlated to

EGFR activation and IL-17 upregulation,37,38 which are also associated

with PD-L1 expression in cancer cells.19,39 Lastly, the causal relation-

ship between C. albicans infection, PD-L1 upregulation, and tumor

progression needs to be further elucidated in more in vivo and in vitro

experiments.

In conclusion, this study demonstrated that C. albicans could

upregulate PD-L1 expression in normal oral keratinocyte (HOK), LSCC

cell line (HN4), OSCC cell lines (Cal27 and HN6), as well as in normal

and OSCC mice. TLR2/MyD88 and TLR2/NF-κB pathways might be

involved in the regulation of PD-L1 expression caused by C. albicans.

Further studies are still warranted to demonstrate the relationship

between C. albicans infection, PD-L1 upregulation, and OSCC

progression.
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