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Abstract
Background To evaluate the validity and reliability of cone-beam computed tomography (CBCT) masseter muscle segmen-
tation by comparing with the magnetic resonance imaging (MRI) masseter muscle segmentation of the same patients.
Methods Seventeen volunteers were included in this study. CBCT and MRI scans of the volunteers were taken, respectively,
within one month. The masseter muscles in the CBCT scans were segmented by a generative adversarial network (GAN)-
based framework combined with manual check. The masseter muscles in the MRI scans were segmented manually. The
segmentations were repeated by the first examiner and a second examiner. For cross-sectional area (CSA), paired t-test,
intraclass correlation coefficient (ICC) and standard error of measurement (SEM) were calculated to evaluate the validity and
reliability of the segmentations. The validity and reliability were also calculated by Dice similarity coefficient (DSC) and
average Hausdorff distance (aHD) between different segmentations.
Seventeen volunteers were included in this study. CBCT andMRI scans of the volunteers were taken, respectively, within one
month. Themassetermuscles in theCBCT scanswere segmented by a generative adversarial network (GAN)-based framework
combined with manual check. The masseter muscles in the MRI scans were segmented manually. The segmentations were
repeated by the first examiner and a second examiner. For cross-sectional area (CSA), paired t-test, intraclass correlation
coefficient (ICC) and standard error of measurement (SEM) were calculated to evaluate the validity and reliability of the
segmentations. The validity and reliability were also calculated by Dice similarity coefficient (DSC) and average Hausdorff
distance (aHD) between different segmentations.
Results Paired t-test showed that therewas no significant difference inCSAbetweenCBCT andMRImasseter segmentations.
The ICCs were all larger than 0.95 and the SEM was less than 4.85 mm2 for CSA. The DSC was all larger than 0.95 showing
over 95% of similarity between CBCT and MRI masseter segmentations. The aHD was all smaller than 0.09 mm showing
great consistency of the contour of CBCT and MRI segmentations.
Conclusion Masseter muscle segmentation from CBCT scans was not significantly different from the segmentation from
MRI scans. CBCT muscle segmentation showed great validity compared with MRI scans, and great reliability in retests.
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Abbreviations

CBCT Cone-beam computed tomography
MRI Magnetic resonance imaging
ICC Intraclass correlation coefficient
SEM Standard error of measurement
CSA Cross-sectional area
DSC Dice similarity coefficient
HD Hausdorff distance
aHD Average Hausdorff distance

Background

Orthodontic tooth movement was not only affected by
mechanical force exerted by wire-bracket system, but also
by physiological forces generated by the orofacial system
[1]. The occlusal force generated by the masticatory mus-
cles is an important component of the physiological forces.
The masseter muscles are large and superficial [2] which
greatly contribute to the occlusal force and serves as an
important role in mastication activity which closely cor-
relates with the long-term morphology of the facial type
(dolichofacial, mesofacial and brachyfacial) [3], temporo-
mandibular joints(TMJ) [4, 5], stability of the dental arch
[6], etc. Furthermore, the masseter muscles also support the
facial soft tissue around the mandibular gonion area which is
crucial to frontal facial profile. While esthetics have gradu-
ally become a major concern of the orthodontic patients and
research shows that posttreatment decrease in the facialwidth
[7, 8] may be related to atrophy of the masseter muscle [9],
it is important to study the masseter muscle in orthodontic
area.

Different medical imaging methods are being used to
study the masseter muscle. Ultrasound was used to measure
the thickness of the masseter muscle [10, 11]. CT and MRI
can both clearly display soft tissue and have been widely
used in studying muscle’s cross-sectional areas or volumes
[12–14]. High consistency has been found between CT and
MRI in the cross sections of the masseter muscle and the
medial pterygoid muscle [13]. Furthermore, the image of
muscles in CT andMRI scans have also been confirmed to be
consistent with dissections [13, 15]. However, CBCT scan-
ning is the only widely used 3-dimentional medical imaging
technique in orthodontic area, while MRI and CT are not
regular tests. The metal restorations or brackets will produce
significant artifacts in MRI scans, not to mention the cost
and time needed for a single scan. Large radiation dose of
CT limits its use for non-surgical patients in dental practice.

Cone-beam computed tomography (CBCT) has been
widely used in orthodontic area for three-dimensional mea-
surements. CBCT can achieve less slice thickness with much
lower radiation dose [16]. Highly improved resolution of the

advanced CBCT technology makes it possible for the mas-
seter muscle to be distinguished from CBCT scans [17] and
the transverse sections of CBCT scans can be used to mea-
sure the cross-sectional area of the masseter muscle [18].
MRI is the widely recognized and examined imagingmethod
for muscle tissues. However, to our knowledge, there’s no
quantitative study comparing the measurement of masseter
muscle from CBCT scans with MRI scans. The gray scale
of soft tissues in CBCT was nonlinear and within a limited
range, making it difficult for auto-segmentation based on the
threshold value.Manually segmentation of themassetermus-
cles from the CBCT scans is tedious and time-consuming
because hundreds of layers need to be processed. Fortunately,
due to the development of artificial intelligence technol-
ogy, automatic medical image procession has been greatly
improved. In combination of machine learning, automatic
masseter muscles segmentation has been realized on both
CT [19, 20] and CBCT scans [21]. Therefore, the purpose of
this study was to evaluate the validity and reliability of the
masseter muscle segmentation from the transverse sections
of CBCT scans compared with MRI scans.

Methods

Acquisition and registration of CBCT andMRI scans

The volunteers were selected from the sequential patients
seeking for treatment in the department of orthodontics,
Peking University School and Hospital of Stomatology. The
imaging data of the patients will be used for a further study
on temporomandibular joint (TMJ). The inclusion and exclu-
sion criteria were as follows: (1) 18–35 years old, (2) with
complete permanent teeth (excluding the third molars) and
without posterior buccal and lingual crossbites, (3) without
craniofacial congenital diseases or soft tissue diseases, (4)
without craniofacial trauma, tumors or history of surgery, (5)
without history of orthodontic treatment, (6)without intraoral
metal restorations or prostheses, (7) without any contraindi-
cations for MRI scanning.

A total of 20 volunteers were included in this study. But
3 were removed due to the deformed images that resulted
from the movement in the scanning procedure of MRI, and
at last, 17 patients were included in this study. Each volunteer
accepted CBCT and MRI scanning at an interval of less than
one month and ensured that the body weight change was
less than 1 kg. Each volunteer signed a written informed
consent. And the protocol was reviewed and approved by the
Institutional Review Board of Peking University School and
Hospital of Stomatology (PKUSSIRB-201944062).

CBCT scans were taken by Newtom VGi (Quantitative
Radiology, Verona, Italy) with the following settings: field of
view (FOV) � 15×15 cm, 110 kV; scan time � 27 s; voxel
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Fig. 1 Registration result of one of the volunteers: top right shows the selection of upper layer for segmentation defined as the axial section passing
through the tip of nose; the middle and lower layer were defined as the axial scan 9 mm and 18 mm lower than the upper layer, respectively

size � 0.2 mm. T2-weighed MRI scans were performed on
3.0 T MAGNETOM Trio Tim (Siemens Healthcare, Erlan-
gen,Germany) scannerwith the following settings: repetition
time (TR) � 3700, echo time (TE) � 90, flip angle � 120,
field of view (FOV) � 512×512; slice thickness � 3 mm;
spacing between slices� 3.6mm, acquisition time≈ 20min.

CBCT and MRI data in Digital Imaging and Commu-
nications in Medicine (DICOM) format of each volunteer
were imported to Amira visual software (version 5.4.3, Vis-
age Imaging, Melbourne, Australia) and registered through
its inherent function module (Fig. 1) [22]. In our study, the
MRI scans were fixed and CBCT scans were registered onto
the MRI scans.

Masseter muscle segmentation in transverse
sections

Since the orientation of original CBCT and MRI scans was
different, CBCT scans were resliced by the Resample func-
tion module in the Amira software using MRI transverse
scans as a reference.

In order to represent the upper, middle, lower parts of the
massetermuscle, three layers in eachpatientwere selected for

Fig. 2 One layer of CBCT scans and masseter muscle segmentation
(green and red) from the ITK-SNAP software

segmentation and comparison. Layers for masseter muscle
segmentation were selected from the sagittal view (Fig. 1,
top right window). The upper layer was defined as the axial
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Fig. 3 The deviation between correspondent CBCT andMRI segmenta-
tions a General deviation between two segmentations showed by color
bar;). b DSC calculation: C (blue) for CBCT segmentation and M (yel-
low) for MRI segmentation. C ∩ M is the overlapped area (green)

between them, and C + M is the total area (blue and yellow) of the
two segmentations. c aHD calculation: arrows connect the paired points
(c→m or m→c) between the two segmentations, and ||c-m|| means
the distance between c and m

Fig. 4 Flowchart of the study showing the labels of different segmentations and comparisons

section passing through the tip of nose. Themiddle and lower
layer were defined as the axial scan 9 mm and 18 mm lower
than the upper layer respectively. Because the MRI scans
mainly focused on TMJ, not all the layers of masseter muscle

were shown in all the patients, the number of layers will be
clarified in the following tables. Left and right sides of each
patient were regarded as two samples, so in total, 34masseter
muscles in the 17 patients were included.
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A self-developed generative adversarial network (GAN)-
based framework [21] was used for noise reduction and
automatic segmentation of masseter muscles from the trans-
verse sections ofCBCTscans. The frameworkwas developed
by the Department of Machine Intelligence, Key Laboratory
ofMachine Perception (MOE), PekingUniversity. A layer by
layer manual check was performed using ITK-SNAP 3.6.0
(http://www.itksnap.org) based on the automatic segmenta-
tion result (Fig. 2). For MRI scans, the segmentation was
manually performed using ITK-SNAP 3.6.0 directly.

Comparisons between CBCT andMRI masseter
muscles

The segmentation result was exported for the analysis of
validity and reliability of the masseter muscle segmentation.

Cross-sectional area (CSA) of each layer of both CBCT
and MRI scans was calculated for the evaluation of validity
and reliability of masseter muscle segmentation.

Since bias cannot be ruled out even the cross-sectional
areas were consistent, we introduced Dice Similarity Coeffi-
cient (DSC)[23] and average Hausdorff distance (aHD) [24]
in order to detect the deviation between the morphology and
position of the corresponding CBCT and MRI segmenta-
tions. The segmentations were exported from ITK-SNAP
3.6.0 software (Fig. 3a) and DSC and aHD were calculated
by self-compiled scripts.

The DSC indicates the overlap between the CBCT and
MRI muscle segmentation (Fig. 3b) and was defined as fol-
lows:

DSC � 2C ∩ M

(C +M)
(1)

(C was the CBCT segmentation and M as the MRI segmen-
tation, C ∩ M was the overlap between them, and the C +M
was the total area of the two segmentations.)

The aHDwasmodified from the Hausdorff Distance (HD)
[25] and calculates the average distance between the CBCT
segmentation and theMRI segmentation. A point on the con-
tour of the CBCT segmentation and its nearest point on the
contour of the MRI segmentation or vice versa form a point
pair (c→m or m→c in Fig. 3c). However, the Hausdorff
Distance (HD) measures the largest distance between the
point pairs (max(||c-m||)) and therefore is very sensible to out-
liers, so we used the average Hausdorff Distance (aHD) [24]
defined as follows to measure the average deviation between
two segmentations (Fig. 3c):

ahd(C,M) � 1

|C|
∑

c∈C
min
m∈M(‖c − m‖) (2)

aHD � 1

2
(ahd(C,M) + ahd(M,C)) (3)

(C is the contour of CBCT segmentation and M the MRI. c
is a point on C, and m on M. |C| is the total number of c. ||c-
m|| means the distance between c and m. Equation (2) tells
that, for every c of C, we find the nearest point m of M, then
take the average over all of c’s. The equations refer to Alba
et al.[24].)

Statistical analysis

The segmentation of the 34 masseter muscles (S1) was
repeated by the same examiner at least two weeks later
(S1’) and the second examiner (S2) (Fig. 4). Validity was
evaluated by comparisons between CBCT andMRI segmen-
tations (CBCT1-MRI1, CBCT1’-MRI1’, CBCT2-MRI2).
Intra-examiner reliability of the muscle segmentation was
calculated by the difference between S1 and S1’ (CBCT1-
CBCT1’, MRI1-MRI1’), and inter-examiner reliability of
the muscle segmentation was calculated by the difference
between S1 and S2 (CBCT1-CBCT2, MRI1-MRI2) (Fig. 4).

For CSA, paired t-test, intraclass correlation coefficient
(ICC) and Standard error of measurement (SEM) [26] were
calculated to evaluate the validity and reliability of the seg-
mentations. SEM was calculated as follows[26]:

SEM � Sx
√
1 − ICC (4)

(Sx is the pooled standard deviation.)
DSC and aHD were directly calculated between different

segmentations to evaluate the validity and reliability.
The statistical analysis of CSAwas performed using SPSS

27.0 (IBM, Armonk, N.Y.), with a significance level of 0.05.

Results

Descriptive statistics

Finally, 34 masseter muscles of 17 patients (4 males and 13
females) were analyzed in this study. The average age of the
sample was 24.80±3.56 years old and their mean bodymass
index (BMI) was 21.23 kg/m2.

Cross-sectional area (CSA)

The validity of the CSA was compared by the difference in
CSA between CBCT and MRI scans in each segmentations
(CBCT1-MRI1, CBCT1’-MRI1’, CBCT2-MRI2). The dif-
ference in CSAs of the three layers between the three CBCT
and MRI segmentations was listed in the first three rows of
Table 1. All the differences in CSAs were not statistically
significant. The reliability of CSA was represented by the
difference in CBCT or MRI segmentations between S1 and
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Table 1 Paired t-test of the difference of CSA (mm2) with zero between different scans of masseter muscle

Upper Middle Lower

N � 16×2* N � 13×2 N � 11×2

Mean±SD p value Mean±SD p value Mean±SD p value

Validity CBCT1-MRI1 − 1.70±19.22 0.80 − 1.52±28.54 0.94 − 8.57±22.49 0.09

CBCT1’- MRI1’ − 5.91±24.81 0.08 1.93±31.35 0.95 − 8.27±19.44 0.06

CBCT2-MRI2 − 2.35±24.48 0.66 − 4.14±24.71 0.43 − 8.31±21.49 0.08

Intra-examiner reliability CBCT1-CBCT1’ 0.90±16.34 0.33 1.83±18.26 0.30 2.47±18.70 0.54

MRI1-MRI1’ − 3.86±15.92 0.29 4.54±21.50 0.17 − 8.04±24.00 0.13

Inter-examiner reliability CBCT1-CBCT2 − 3.30±21.57 0.29 5.28±13.85 0.12 2.78±22.86 0.58

MRI1-MRI2 − 4.51±19.54 0.25 1.92±17.19 0.53 − 7.78±29.63 0.23

*N � 16×2 means that 16 patients with upper layer times 2 sides of each patient (same in middle and lower layers and in the following tables)

Table 2 ICC and SEM of the CSA (mm2) measurements

ICC SEM (mm2)

Upper Middle Lower Upper Middle Lower
N � 16×2 N � 13×2 N � 11×2 N � 16×2 N � 13×2 N � 11×2

Validity CBCT1-MRI1 0.97 0.95 0.98 3.18 4.85 1.90

CBCT1’-MRI1’ 0.98 0.95 0.97 2.09 4.72 2.84

CBCT2-MRI2 0.98 0.97 0.98 2.19 2.80 2.05

Intra-examiner reliability CBCT1-CBCT1’ 0.98 0.98 0.99 2.12 2.02 0.96

MRI1-MRI1’ 0.97 0.99 0.98 3.15 0.90 1.87

Inter-examiner reliability CBCT1-CBCT2 0.97 0.98 0.99 3.34 1.95 1.00

MRI1-MRI2 0.96 0.98 0.98 4.16 1.85 1.95

Table 3 Comparison of dice
similarity coefficient (DSC) of
masseter muscles segmentation
from CBCT and MRI scans and
remeasurements

Upper Middle Lower
N � 16×2 N � 13×2 N � 11×2

Validity CBCT1-MRI1 0.95±0.02 0.96±0.02 0.94±0.01

CBCT1’- MRI1’ 0.96±0.02 0.95±0.02 0.95±0.02

CBCT2-MRI2 0.95±0.02 0.96±0.01 0.95±0.03

Intra-examiner reliability CBCT1-CBCT1’ 0.97±0.02 0.97±0.01 0.97±0.02

MRI1-MRI1’ 0.97±0.02 0.97±0.02 0.96±0.02

Inter-examiner reliability CBCT1-CBCT2 0.97±0.02 0.97±0.01 0.96±0.01

MRI1-MRI2 0.97±0.02 0.97±0.01 0.96±0.02

Table 4 Comparison of average
Hausdorff distance (aHD) (mm)
of masseter muscles
segmentation from CBCT and
MRI scans and remeasurements

Upper Middle Lower
N � 16×2 N � 13×2 N � 11×2

Validity CBCT1-MRI1 0.09±0.21 0.05±0.08 0.06±0.07

CBCT1’- MRI1’ 0.04±0.05 0.03±0.02 0.03±0.02

CBCT2-MRI2 0.08±0.14 0.06±0.12 0.08±0.12

Intra-examiner reliability CBCT1-CBCT1’ 0.07±0.20 0.04±0.08 0.04±0.07

MRI1-MRI1’ 0.07±0.14 0.05±0.11 0.06±0.11

Inter-examiner reliability CBCT1-CBCT2 0.04±0.09 0.02±0.01 0.03±0.01

MRI1-MRI2 0.04±0.11 0.03±0.09 0.05±0.09
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S1’, S1 and S2 (CBCT1-CBCT1’, MRI1-MRI1’, CBCT1-
CBCT2, MRI1-MRI2) (Table 1, the last four rows).

Intraclass correlation coefficient (ICC) andSEMsbetween
the three CBCT andMRI segmentations were shown in Table
2. In general, the ICCs were higher and SEMs were lower
in the second segmentations showing greater validity in the
second segmentation than in the first. ICCs were all higher
than 0.95. And the SEMs ranged from 1.00 to 4.85 mm2 in
all layers which is relatively small clinically.

Dice similarity coefficient (DSC) and average
Hausdorff distance (aHD)

The segmentations of CBCT and MRI scans were mutually
compared and DSC and aHD were calculated (Tables 3,4).
Validity was represented by the DSC and aHD between
CBCT andMRI scans in each segmentation (CBCT1-MRI1,
CBCT1’-MRI1’, CBCT2-MRI2, first three rows of Tables 3,
4). Reliability was represented by the DSC and aHD between
different times of CBCT and MRI segmentations (CBCT1-
CBCT1’, MRI1-MRI1’, CBCT1-CBCT2, MRI1-MRI2, last
four rows of Tables 3, 4). The DSCs were all larger than 0.95
which is quitewell in segmentation and pretty low aHDs (less
than 0.1 mm) were found in all the comparisons.

Discussion

In this study, we found that masseter muscle could be prop-
erly displayed in CBCT scans with similar image quality as
that in MRI scans. The morphology and contour of masseter
muscle segmentations fromCBCT scans are not significantly
different from the MRI scans.

The morphology and function of masseter muscles are
closely related to the dentofacial system. In terms of thera-
peutic decision, patients with short face are usually accom-
panied by strong masseter strength, and the alveolar bones
could be tougher than those with long face and weak mas-
seter muscle strength [27]. For example, in clinical decision,
nonextraction treatment was usually preferred in patients
with short face (smaller mandibular angle) since the tooth
movement were harder and slower in those with tough alve-
olar bones [28]. Segmentation and reconstruction ofmasseter
muscles, and furthermore, temporalis and medial and lateral
pterygoid muscles, would be helpful in retrospective studies
focusing on the relationship between masticatory activities
[29], the morphology of mandibles and dental arch. The seg-
mentation of masticatory muscles may also be of great help
in the construction of a finite element model of the whole
craniofacial system. Usually, this kind of studies were based
onCT scans [29, 30]. If the segmentation ofmasticatorymus-
cles could be realized in CBCT scans, radiation dose exposed
to patients could be largely decreased.

MRI is one of the most generally accepted imaging meth-
ods to study the morphology of masseter muscles with the
advantages of no radiation doses and clear soft tissue display
[31]. Studies have been done on the soft tissue clearness inCT
and MRI, which have found that CT have similar clearance
in studying muscle tissues to MRI [13] and both are in great
concordance with anatomic dissections [13, 15, 32]. How-
ever, due to previously mentioned limitations, neither of the
two imaging methods were widely used in orthodontic area.
CBCT, instead, is becoming a common imaging method in
orthodontic practice [33]. Therefore, in this study, we would
like to explore that whether the masseter muscle image in
CBCT can also be used for soft tissue analysis.

Three layers relative to the masseter muscle were chosen
for segmentation in this study, because different structures
may influence the segmentation of masseter muscles in
CBCT scans. The parotid glandwas located posterior, and the
buccal fat pad was located lateral and anterior to the masseter
muscle [2], and they were all of similar gray scale in CBCT
scanswhichmay be hard to distinguishwith themuscle tissue
[34].

For CSA, the validity was represented by the consistency
between CBCT and MRI scans of the same patients, with
MRI being used as the “golden standard” and the reliabil-
ity was represented by the consistency between multiple
measurements. Usually, the consistency was compared using
two categories of indicators, correlation analysis and error
analysis. Correlation analysis includes Pearson’s correlation
coefficient [35, 36], intraclass correlation coefficient (ICC)
[12] and regression analysis [15]. Error analysis includes
standard error [12] or method error. While correlation analy-
sis reflects the variance ranging from0 to 1, the standard error
has the same units with the measurements and is not influ-
enced by the variability of the patients [12, 26]. Therefore, in
this study, we choose both ICC and SEM. The ICCwas inter-
preted as follows: below 0.699 was poor, 0.700–0.799 was
fair, 0.800–0.899 was good, and 0.900 to 1.000 was excellent
[12]. In this study, the ICCs were all larger than 0.95 which
was excellent consistency. The SEM for CSA was 1.00–4.85
mm2 which was clinically acceptable.

In terms of the selection of comparison variables, DSC
reflects the internal characteristics of the morphology [23]
and HD reflects the marginal characteristics of the contour
[25]. However, it is well-known that HD could be easily
influenced by noise and extreme value of the segmentation
margins. Therefore, to reduce the influence of outliers, we
used a modified parameter—the average Hausdorff distance
(aHD) in this study tomeasure the average deviation between
two segmentations [24]. Noise could be erased in this study
because all the CBCT segmentations was manually checked
and corrected and all the MRI segmentations were depicted
manually. In this study, high DSC (over 0.95) and low aHD
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(under 0.1 mm) shows great morphological similarity and
reliability of CBCT and MRI segmentations.

In the actual clinical practice, it is impossible to obtain the
real cross sections of the patients’ masseter muscles, so MRI
was one of the best approaches to study the morphology of
masseter muscles. If there was no significant difference in
the morphology of masseter muscles between CBCT and
MRI, it may be the basis for us to replace MRI by CBCT
in studying masseter muscles. Our study showed that CBCT
scans taken with proper settings can replaceMRI in studying
the morphology of masseter muscles with both great validity
and reliability.

There are also several limitations in this study. Motions
during the MRI scanning may influence the trueness of the
morphology of masseter muscles. Different scanning posi-
tion may lead to some extent of soft tissue deformation
betweenMRI (supine position) andCBCT (upright position).
In addition, although the patients were asked to keep in light
occlusal position during the imaging process, it could also
be possible that the patients changed to rest position instead
during the long duration of MRI scanning.

The advantage of CBCT is shorter scan time, smaller
slice thickness and no slice gap [33]. Because of short scan
time, it is easier for the patients to keep occlusal position
without movement, which decrease the possibility of defor-
mation due to movement of the patient. Also, CBCT scans
used in orthodontic area can have voxel resolutions ranging
from 0.125 to 0.4 mm [33] which makes it more capable
of three-dimensional reconstruction. With similar segmenta-
tion outcomes, CBCT could serve as a more convenient and
operationally controllable approach formuscle segmentation
tasks.

Conclusions

Masseter muscle segmentation from CBCT scans taken with
proper settings was not significantly different from the seg-
mentation from MRI scans. CBCT muscle segmentation
showed great validity compared with MRI scans, and great
reliability in retests. Therefore, masseter muscle images in
CBCT scans can be a source of three-dimensional informa-
tion for orthodontic clinic and research.
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