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regulating directional MSCs lineage fate 
is considered to be a key aspect in the 
overall evaluation of biomaterials in the 
treatment of tissue defects arising from 
trauma, inflammatory diseases, or meta-
bolic disorders.[3] For example, precise 
regulation of lineage fate by biomaterials 
could lead to MSCs differentiating toward 
osteoblast/chondrocyte progenitors within 
osteochondral defects at the right time 
and place.[4]

Nevertheless, research progress in this 
area is being impeded by limitations of 
conventional techniques in evaluating the 
induction efficiency of stem cell lineage 
commitment, which are time-consuming, 
labor-intensive, and uneconomical.[5] 
Examples include microscopic observa-
tions with various staining techniques, 
flow cytometry, polymerase chain reaction 
(PCR), and Western Blots, which evaluate 
lineage-specific differentiation by identi-

fying specific biomarkers of known cell types.[6] Next-generation 
sequencing (NGS) is also widely used due to its high throughput 
capacity.[7] Stem cell lineage fate can be predicted by functional 
bioinformatics analysis. However, results based on current 
methods can be affected by many factors, such as different labora-
tory apparatuses and reagent resources and the varying skill levels 
of operators.[8] Consequently, it is difficult to directly compare data 
generated from different laboratories. Moreover, tedious normali-
zation is required to analyze data across different materials or on 

Current functional assessment of biomaterial-induced stem cell lineage fate 
in vitro mainly relies on biomarker-dependent methods with limited accuracy 
and efficiency. Here a “Mesenchymal stem cell Differentiation Prediction 
(MeD-P)” framework for biomaterial-induced cell lineage fate prediction is 
reported. MeD-P contains a cell-type-specific gene expression profile as a 
reference by integrating public RNA-seq data related to tri-lineage differentia-
tion (osteogenesis, chondrogenesis, and adipogenesis) of human mesen-
chymal stem cells (hMSCs) and a predictive model for classifying hMSCs 
differentiation lineages using the k-nearest neighbors (kNN) strategy. It is 
shown that MeD-P exhibits an overall accuracy of 90.63% on testing datasets, 
which is significantly higher than the model constructed based on canonical 
marker genes (80.21%). Moreover, evaluations of multiple biomaterials show 
that MeD-P provides accurate prediction of lineage fate on different types of 
biomaterials as early as the first week of hMSCs culture. In summary, it is 
demonstrated that MeD-P is an efficient and accurate strategy for stem cell 
lineage fate prediction and preliminary biomaterial functional evaluation.

ReseaRch aRticle
 

1. Introduction

Biomaterials can be fabricated with a variety of different phys-
icochemical factors that could efficiently induce stem cells 
into designated cell lineages through various complex regula-
tory mechanisms.[1] Mesenchymal stem cells (MSCs), which 
possess self-renewal capacity and multi-lineage differentiation 
potential, are currently the most commonly utilized stem cell 
type in tissue engineering.[2] The performance assessment on 
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different batches of the same material. Hence, there is a dire need 
for a more efficient, accurate and convenient method that sup-
ports cross-laboratory, inter-material, and batch-independent com-
parisons for functional evaluation of biomaterials.

To overcome these challenges, the application of artificial 
intelligence in biomedicine may be particularly useful, as this 
has advanced greatly in recent years.[9] Several studies have 
reported that machine learning can be used to make precise pre-
dictions. Recent findings suggested that machine learning could 
recognize morphological changes from microscopy images and 
subsequently predict the development and lineage commitment 
of hematopoietic stem cells earlier than the beginning of any 
known developmental progress. There is also a deep-learning 
model named HE2RNA, which is able to predict the molecular 
phenotypes of tumors using hematoxylin & eosin (H&E)-stained 
histology slides alone.[10] Pengfei et al. applied machine learning 
in the development of a classifier to identify five molecular sub-
types of breast cancer by reconstructing transcriptional classi-
fications based on RNA-seq data.[11] These studies highlighted 
the possible further application of machine learning in the field 
of biomaterials research. Big data is the basis for success of a 
machine learning model.[12] Improvements in materiomics pro-
vide possible approaches by the accumulation of biomaterial-
derived transcriptomic data in recent studies.[13] We hypothesize 
that machine learning could be used not only to identify physi-
ological variations among cell types, but also to judge cellular 
functional changes induced by biomaterials. By learning from 
many sets of differentiated cellular whole-genome gene expres-
sion data, a machine learning model can be constructed to 
evaluate stem cell lineage fate based on global gene expression 
patterns. Hence, the output could be used to measure and com-
pare the effects of biomaterials in regulating stem cell lineage fate.

In this study, we developed “Mesenchymal stem cell Differ-
entiation Prediction (MeD-P),” an integrative package for eval-
uating biomaterial-induced human mesenchymal stem cells 
(hMSCs) lineage fate based on transcriptomic data. To obtain 
adequate data for machine learning, public RNA-seq datasets 
related to osteogenesis, chondrogenesis, and adipogenesis of 
hMSCs were collected and assigned to training datasets and 
testing datasets (Figure 1A). After batch effect adjustment and 
feature selection, the lineage-specific gene expression reference 
was constructed based on training datasets. And an evaluation 
model was implemented using machine learning algorithms 
that could predict lineage fate of hMSCs differentiation from 
gene expression patterns (Figure  1B). Then, several trial cases 
were implemented on representative biomaterials as examples. 
By comparing processed RNA-seq data with the gene expression 
reference, this model can compute lineage fate probabilities of 
hMSCs after incubation with the biomaterials (Figure 1C). The 
results proved that the model functioned reasonably well in 
evaluating hMSCs lineage fate accurately during the early stage.

2. Results

2.1. MeD-P Package Design

The MeD-P framework was designed to recognize cell lineage-
specific features from public transcriptome data using machine 

learning for predicting biomaterial-induced stem cell lineage 
fate. The framework comprises three major parts: 1) Batch 
effect adjustment to remove unwanted data variances from dif-
ferent batches that arise from different cell sources and experi-
mental conditions, that is, in training, testing, and predicting 
processes; 2) A lineage-specific gene expression reference for 
hMSCs that represents cell lineage-specific features was cre-
ated for training the model; 3) Nine available machine learning 
methods were tested and the best one was selected as default in 
the prediction task. MeD-P takes RNA-seq data from biomate-
rial-induced hMSCs samples as input and predicts the cell dif-
ferentiation state as probability of four possible cell lineages in 
this study, as illustrated in Figure 2.

2.2. Training, Validation, and Testing Dataset Allocation

We collected 12 public RNA-seq datasets encompassing chem-
ically-induced tri-lineage differentiated human mesenchymal 
stem cells from 0 to 21 days of culture from two large-scale repos-
itories GEO and ArrayExpress.[14–24] After filtering out unquali-
fied samples using hierarchical cluster analysis (Figure S1,  
Supporting Information), we obtained a training dataset con-
sisting of a total of 132 samples from 5 datasets (Table 1) and 
a testing set consisting a total of 96 samples from 7 datasets 
(Table 2), with labels in one of four distinct cell types including 
undifferentiated MSCs and three different cell lineages—
osteogenic, chondrogenic, and adipogenic lineages. For the 
purpose of increasing the robustness of machine learning 
models against batch variances, we included RNA-seq data 
acquired using various hMSCs. The detailed information about 
the hMSCs used included 12 datasets that are listed in Data 
file S1, Supporting Information, including MSCs tissue origin, 
MSCs characterization information, MSCs culture medium, 
chemical components of differentiation induction medium, 
harvesting timepoints after differentiation induction, and bio-
logical replicates.

After that, the testing set was set aside and 70% of the 
training dataset was randomly selected as the actual training 
set with the remaining 30% as the validation set (Table  3). 
Briefly, according to stratified random sampling, 70% of sam-
ples in each cell type within the training dataset were randomly 
selected as the training set, while the remaining samples were 
collected as the validation set. Then the machine learning 
models can be iteratively trained and validated on these various 
splits.

2.3. Batch-Effect Adjustment Removes Undesired Batch  
Variances among Different Samples

Cell lineage-specific gene expression is the basis for learning 
and predicting differentiation states with this method. How-
ever, the batch variance that is unrelated to biological features 
could affect the feature learning and prediction. Therefore, 
we applied batch-effect adjustment on the training datasets 
before initiating learning of cell lineage-specific features. 
Circular hierarchical clustering on datasets before and after 
batch-effect adjustments revealed that samples were clustered 
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based on batches before adjustment, but not after adjustment 
(Figure  3A). The variation attributed to batch in the adjusted 
data was greatly reduced compared with that in the unadjusted 
data (Figure  3B). In addition, the adjustment also resulted in 
similar sample-level gene expression distribution among data-
sets (Figure 3C). The tSNE visualization of reduced dimension-
ality of transcriptome among datasets showed that samples 
were clustered according to batches and differentiation lineages 
before and after adjustment, respectively (Figure  3D). After 
adjustment, the normalized gene expression of housekeeping 
genes showed no differences among samples as exemplified by 
the following genes CHMP2A, PPIA, and SNRPD3 (Figure S2A,  
Supporting Information), while there was higher expression of 
lineage-specific genes in the corresponding cell lineages com-
pared to others, as exemplified by lineage-specific genes OPN, 
ALPL, WNT2B (for osteogenesis), MATN3, SOX9, COL2A1 (for 
chondrogenesis), PPARG, ADIPOQ, and CEBPA (for adipogen-
esis) (Figure S2B–D, Supporting Information). These results 

thus suggest that batch-effect adjustment successfully removed 
undesired batch variances among different samples, while 
retaining the cell-type-specific differences.

2.4. Lineage-Specific Gene Expression Reference for hMSCs 
Differentiation

To predict the cell lineage fate, we selected only genes that 
represent the specificity of different cell lineages for model 
training.

Hence, we applied DESeq2 for feature genes selection by 
pair-wire comparison in four classes. For example, for osteo-
genesis-specific feature gene selection, we set the osteogenic 
samples as the experimental group, while the other three 
classes (chondrogenesis, adipogenesis, undifferentiated) were 
set as the control group respectively, followed by selection of 
three gene sets that are highly expressed in the experimental 

Adv. Mater. 2023, 35, 2210637

Figure 1. Overview of the workflow. A) We first collected RNA-seq datasets related to tri-lineage differentiation of human mesenchymal stem cells 
(hMSCs) from public databases and assigned them into training and testing datasets. B) Then bioinformatic analysis was performed on training data-
sets comprising quality control, batch effect adjustment and feature selection to obtain the regenerative gene expression reference for hMSCs. Based 
on this, the assessment model was implemented to predict hMSC lineage fate based on machine learning. Then the performance of the assessment 
model was evaluated on testing datasets. C) The assessment model was used to evaluate the regenerative potential of representative biomaterials. 
Briefly, hMSCs were cultured on biomaterials and harvested for RNA-seq. Processed RNA-seq data were loaded into the model and a report predicting 
tri-lineage differentiation probabilities was generated.
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group, as compared with the three control groups respectively. 
Then we took the concatenation of the three gene sets as the 
highly expressed osteogenesis-specific gene list. After feature 

selection for the four classes, we collected the concatenation of 
the four characteristic gene lists as the overall feature genes. 
There included a total of 343 genes that were highly expressed 

Adv. Mater. 2023, 35, 2210637

Table 1. Details of the training RNA-seq datasets after quality control.

Accession Platform Sample origin Osteogenesis Chondrogenesis Adipogenesis Undifferentiated Reference

GSE113253 HiSeq 1500 BM-hMSC-TERT4a) 12 — 15 3 [14]

AT-hMSC-TERTb) 8 — 10 2

GSE109503 HiSeq 2500 hBM-MSC — 11 — 3 [15]

GSE129036 NextSeq 500 hBM-MSC 17 — — 4 [16]

GSE135775 HiSeq 4000 hBM-MSC — — 12 0 [17]

GSE161176 HiSeq 2500 hBM-MSC — 26 — 9 [18]

SUM 37 37 37 21

a)Telomerase-immortalized bone marrow-derived MSCs; b)Telomerase-immortalized adipose tissue-derived MSCs.

Figure 2. Utilization of package MeD-P. The .fastq file of RNA-seq data was initially pre-processed to obtain the gene expression count matrix using 
fastp, bowtie2, star, and featureCounts. Then ComBat_seq and DaMiR.iTSnorm was applied in adjusting the gene expression count distribution and 
normalizing the testing data to map with training data. The gene expression matrix of 343 DEGs was then extracted and loaded into the intelligent 
assessment model to obtain the differentiation scoring report for biomaterials cultured with hMSCs.
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in one of the four selected cell lineages. These genes with their 
corresponding expression levels were utilized as the lineage-
specific gene expression reference for hMSCs differentiation. 
The expression profiles of selected genes are shown in the 
heatmap that displays cell lineage-specific gene expression 
patterns including some canonical marker genes (Figure  3E). 
Furthermore, the PCA analysis based on the selected gene 
expression profile showed a landscape with clustered samples 
and formation of three differentiation lineage pathways in the 
3D PCA plot view (Figure 3F). Selected genes are listed in Data 
file S2, Supporting Information. These results suggest that 
selected genes were able to represent cell lineage-specific fea-
tures, which could be used as a reference for training and pre-
dicting tasks.

2.5. Benchmarking of Machine Learning Models on Testing 
Datasets

We utilized a wide range of available machine learning 
methods, including Support Vector Machine with radial basis 
function kernel or linear kernel (SVM-R and SVM-L),[25]  
Random Forest (RF),[26] Gaussian Naive Bayes (GNB),[27] 
Linear Discriminant Analysis (LDA),[28] Logistic Regression 
(LR),[29] Multi-layer Perceptron (MLP),[30] RidgeClassifierCV  

(RidgeCV),[31] and k-nearest neighbors (kNN),[32] to train 
the prediction models. For each method, we optimized the 
parameters of the model through cross-validation based on 
the various splits of the training and validation sets. The 
trained models were applied on testing datasets to benchmark 
their prediction performance after removal of batch-effects 
(Figure 4A,B). The metadata of samples in the testing datasets 
are shown in Data file S3, Supporting Information, including 
hMSC sources, harvesting timepoints, and data accessions. 
Most of the chemically-induced samples (45 out of 78) were 
harvested on day 1–3.

We evaluated the nine established models (SVM-R, SVM-L, 
RF, GNB, LDA, LR, MLP, RidgeCV, kNN) based on accu-
racy, f1-score, precision, recall, and specificity, which are 
common performance evaluation metrics for machine learning 
models.[33] Among the five metrics, the f1-score and AUROC 
value are more comprehensive metrics for model performance 
evaluation relative to specificity and precision. For multi-class 
classification tasks like the task in this study, the overall f1-score 
and accuracy are the same value.[34] The results showed that the 
kNN model yielded the best performance on the basis of the 
overall evaluation, with the highest overall accuracy (90.63%), 
AUROC value (0.966), and per-class accuracy and f1-score 
(Figure 4C,D and Figure 5A,B). The kNN model also displayed 
quite high per-class precision, recall, specificity and overall 

Adv. Mater. 2023, 35, 2210637

Table 2. Composition of public testing RNA-seq datasets after quality control.

Accession Platform Sample origin Osteogenesis Chondrogenesis Adipogenesis Undifferentiated Reference

E-MTAB-6298 HiSeq 2500 hAD-MSC 12 — 12 11 [19]

GSE159138 HiSeq 2000 hAD-MSC 5 — — — [20]

GSE159137 HiSeq 2000 hAD-MSC — — — 5 [20]

E-MTAB-4879 HiSeq 2000 hBM-MSC 8 6 — 8 [21]

GSE114117 HiSeq X Ten hBM-MSC 6 — — 1 [22]

GSE166824 NextSeq 500 hBM-MSC 6 — 6 3 [23]

GSE174794 HiSeq X Ten hBM-MSC 3 — 3 1 [24]

SUM 40 6 21 29

Table 3. The training, validation, and testing data set partitioning.

Accession Data usage Sample size [%] Osteogenesis Chondrogenesis Adipogenesis Undifferentiated

GSE113253 Modeling, 
cross-validation

Training set 93 (70%) 26 (70%) 26 (70%) 26 (70%) 15 (70%)

GSE109503

GSE129036

GSE135775 Validation set 39 (30%) 11 (30%) 11 (30%) 11 (30%) 6 (30%)

GSE161176

132 (100%) 37 (100%) 37 (100%) 37 (100%) 21 (100%)

E-MTAB-6298 Benchmarking Testing set 96 (100%) 40 (100%) 6 (100%) 21 (100%) 29 (100%)

GSE159138

GSE159137

E-MTAB-4879

GSE114117

GSE166824

GSE174794
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Figure 3. The regenerative gene expression reference for hMSCs was constructed. A) The circular dendrograms revealed that hierarchical clustering did 
not match original batches in the adjusted data (right) better compared with the unadjusted data (left). The samples are colored by batch. B) In the 
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specificity (Figure 5C–F). Although several models had a higher 
overall specificity, per-class specificity, or per-class precision 
than kNN (Figure 5C–F), they did not manifest advantages in 

the overall accuracy (f1-score) and AUROC values (Figure 4C,D). 
Hence, the kNN model was selected as the default model for 
MeD-P.

Adv. Mater. 2023, 35, 2210637

Figure 4. Data adjustment effectively reduced batch variation in testing datasets. A) The boxplots showed sample-level gene expression distribution in 
independent testing datasets together with the five training datasets before (left) and after (right) data adjustment. B) The tSNE plots revealed that samples 
were clustered according to original batches in the unadjusted data (left). Within the adjusted data (right), samples were clustered by cell lineages. Different 
cell lineages and batches in samples are represented by different colors and shapes respectively. C) The overall accuracy of nine models in benchmarking the 
testing datasets. D) The micro-average ROC curves of nine models. Abbreviations: ROC, receiver operating characteristic; AUROC, area under ROC curve.

adjusted data (right), batch variation was greatly reduced compared with that in the unadjusted data (left). C) The boxplot showed that sample-level 
gene expression value distribution across five batches were similar in the adjusted data (right), while there was clear distributional difference across 
batches before batch effect adjustment was carried out (left). D) The tSNE plots revealed that samples were clustered according to original batches 
in the unadjusted data (left). While in the adjusted data (right), samples were clustered by cell lineages. E) Heatmap showing the characteristic gene 
expression profiles of the reference, containing canonical marker genes. F) 3D PCA plot visualized the relative spatial distance among the four clusters 
of samples. Different cell lineages and batches in the samples are represented by different colors and shapes respectively. Abbreviations: Ad, Adipo-
genesis; Ch, Chondrogenesis; MSC, Mesenchymal stem cells; Os, Osteogenesis.

 15214095, 2023, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202210637 by Peking U
niversity H

ealth, W
iley O

nline L
ibrary on [21/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



© 2023 Wiley-VCH GmbH2210637 (8 of 19)

www.advmat.dewww.advancedsciencenews.com

We further examined the prediction ability of the kNN model 
on different cell lineages of the testing datasets and found 
that the precision and recall were both 0.925 on average for 40 
osteogenesis samples (Figure 6A). A small portion of the osteo-
genesis samples were mis-predicted as adipogenesis samples 
and undifferentiated MSCs samples (Figure  6B,C). The pre-
diction on adipogenesis samples had the lowest recall (0.762) 
compared to other cell types, with only 3 and 2 samples being 
mis-predicted as undifferentiated MSCs and osteogenesis sam-
ples, respectively. The prediction accuracy on chondrogenesis 
and undifferentiated MSCs samples were generally high with 
values of 100% and 94.79% respectively. Consistently, the ROC 
curves showed that the chondrogenesis samples and undiffer-

entiated MSCs samples have the highest AUROC scores (1.000 
and 0.993, respectively) while the adipogenesis samples had the 
lowest AUROC score (0.897). Overall, the prediction of the kNN 
model had the highest AUROC score (0.966) among all models 
(Figure 6D).

2.6. Model Trained on Selected Gene Expression Reference 
Outperforms Those Trained on Canonical Marker Genes and the 
All-Gene-Set

When generating the training model, we questioned whether 
the selected lineage-specific gene expression reference was 

Adv. Mater. 2023, 35, 2210637

Figure 5. Performance comparison of nine machine-learning models in benchmarking public testing datasets. A) The per-class accuracy on testing 
datasets among nine machine-learning models. B) The per-class f1-score on testing datasets among nine machine-learning models. C) The per-class 
precision on testing datasets among nine machine-learning models. D) The per-class recall on testing datasets among nine machine-learning models. 
E) The per-class specificity on testing datasets among nine machine-learning models. F) The overall specificity on testing datasets among nine machine-
learning models.
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better than known canonical lineage-specific marker genes 
as training features. To address this issue, we generated the 
training model on canonical lineage-specific marker genes 
(Table S1, Supporting Information) on the same training sam-
ples and did prediction on the same testing datasets with the 
same machine learning methods and procedures. In addition, 

we also tested the models trained on randomly-selected gene 
sets with the same number of genes as the selected gene ref-
erence, as well as the model trained on all genes that passed 
the quality control. Comparisons of these models on the testing 
datasets showed that the model trained on the selected gene 
expression reference had higher per-class accuracy, specificity, 

Adv. Mater. 2023, 35, 2210637

Figure 6. Machine learning performed well in hMSCs lineage fate assessment. A) The classification report showed the accuracy, precision, recall, and 
f1-score of the model on four classes with different number of samples. B) The classification prediction error report showed the numbers of correctly 
and wrongly predicted samples. C) The confusion matrix showed the detailed sample composition of predicted classes in the actual classes. D) The 
ROC curve and AUROC values showed that the model obtained high performance in generalization ability. E) The linechart showed that the reference 
genes obtained much higher per-class accuracy and specificity compared with random 343 genes and canonical marker genes, but were slightly higher 
than the all gene-set. F) The linechart showed that the reference genes obtained higher per-class precision and recall compared with random 343 genes, 
marker genes and all genes. G) The linechart showed that the reference genes obtained the highest per-class f1-score compared with random 343 
genes, marker genes and all genes. H) The linechart showed that the reference genes obtained the highest overall accuracy and specificity compared 
with random 343 genes, marker genes, and all genes.
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precision, recall, and f1-score, as compared to those trained on 
canonical marker genes, randomly-selected gene sets, and the 
allgene-set (Figure  6E–G and Table 4). The reference gene set 
also had the overall highest accuracy and specificity (Figure 6H).

Furthermore, because day 7 is a common timepoint for eval-
uating biomaterials-induced MSCs differentiation,[35] we have 
added the comparison between canonical marker genes and ref-
erence genes-supported MeD-P using day 7 samples, from both 
the public testing datasets and tri-lineage differentiation experi-
ments in our own laboratory. The results demonstrated that ref-
erence genes-supported MeD-P had a higher overall accuracy 
than canonical marker genes in benchmarking day 7 samples, 
especially for the undifferentiated samples (Figure S3A,B,  
Supporting Information).

These results thus demonstrate the potential and efficiency 
of the selected gene expression reference as the training fea-
tures for the prediction model.

2.7. MeD-P Provides Robust, Accurate, and Quick Predictions 
on Varied Biomaterial-Induced hMSCs Lineage Fate

For evaluation, human bone marrow-derived mesenchymal 
stem cells (hBM-MSCs) were cultured on representative bioma-
terials and harvested for RNA-seq after 7 days. Processed RNA-
seq data were loaded into MeD-P, and a report on tri-lineage 
differentiation probabilities was generated (Figure 7A).

The 3D-printed beta-tricalcium phosphate (β-TCP) scaf-
folds had a porous network structure with high specific surface 
area, exhibiting ability to control the release of bioactive ions  
(Figure S4A–E, Supporting Information). The electrospun 
poly-l-lactic acid (PLLA) nanofibrous membranes had uniform 
nanofibers, which displayed biomimetic nano-topography sim-
ilar to that of the extracellular matrix in the randomly-oriented 
(RD) group and were arranged in parallel in the aligned (AL) 
group (Figure S5A,B, Supporting Information). Sandblasting 
with large grit and acid-etching (SLA)-treated Ti-6Al-4V sub-
strates had a rough morphology mimicking the surface texture 
of dental implants (Figure S6A–D, Supporting Information). 
These biomaterials are widely investigated in regenerative 
medicine and have displayed much potential in stem cell oste-
ogenic regulation.[36] The BaTiO3 nanoparticles (BTO NPs)/
poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) nano-
composite membranes displayed stable electroactivity after 
polarization (Figure S7A–E, Supporting Information). The 
l-phenylalanine (LH) and the d-phenylalanine (DH) hydrogel 
matrices exhibited a helical 3D network structure in nanoscale, 
and the nanofibers had the characteristics of left-handed 
and right-handed ultrachiral assembly properties, respec-
tively (Figure S8A,B, Supporting Information). Our previous 
researches have found that polarized BTO NPs/P(VDF-TrFE) 
nanocomposite membranes and l-phenylalanine hydrogel 
matrices could induce the osteogenesis of MSCs, and that 
d-phenylalanine hydrogel matrices had inductive potential in 
adipogenic differentiation of MSCs.[35a,b]

hBM-MSCs used in the biomaterials-related experiments 
were characterized by cell surface antigen expression pro-
file and validation of tri-lineage differentiation potential as 
shown in Figure S9, Supporting Information. It can be seen 
from Figure S9A, Supporting Information, that hBM-MSCs 
at passage 3 exhibited spindle-shaped morphology. As shown 
in Figure S9B, Supporting Information, there were 99.83%, 
98.90%, 97.71%, 99.86%, 99.68% of the hBM-MSCs population 
expressing positive MSC antigen markers CD29 (v), CD166 (vi), 
CD105 (vii), CD73 (viii), and CD44 (ix), respectively. While less 
than 4.00% of the hBM-MSCs population expressed negative 
MSC antigen markers CD14 (x), CD45 (xi), CD34 (xii), CD11b 
(xiii), and HLA-DR (xiv). The tri-lineage differentiation potential 
of hBM-MSCs were validated by Alizarin Red S, alkaline phos-
phatase (for osteogenesis), Alcian Blue (for chondrogenesis), 
and Oil Red O (for adipogenesis) staining after 14 or 21 days of 
induction, as demonstrated in Figure S9C–E, Supporting Infor-
mation. The quantitative real-time PCR also demonstrated sig-
nificant upregulation of lineage-specific early marker genes in 
tri-lineage differentiated hBM-MSCs (Figure S9F, Supporting 
Information).

Then we respectively collected RNA-seq data of hBM-MSCs 
and processed these using the MeD-P package after 7 days 
of culture on 3D-printed β-TCP scaffolds, electrospun PLLA 
nanofibrous membranes, SLA-treated Ti-6Al-4V substrates, 
BTO NPs/P(VDF-TrFE) nanocomposite membranes, and phe-
nylalanine hydrogel matrices. The hBM-MSCs were also cul-
tured in normal culture medium for 7 days and collected as 
blank control. The assessment report of MeD-P showed that 
the β-TCP scaffolds yielded the highest probability in inducing 
osteogenesis of hBM-MSCs (Figure 7B,C), which was validated 

Adv. Mater. 2023, 35, 2210637

Table 4. Reference genes performed well in hMSCs lineage fate assess-
ment compared with other gene sets.

All genes Random  
343 genes

Marker 
genes

Reference 
genes

Per-class accuracy [%] Os 92.70833 77.50577 88.54167 93.75

Ch 94.79167 91.91291 94.79167 100

Ad 91.66667 83.78668 88.54167 92.70833

MSC 93.75 83.59916 88.54167 94.79167

Per-class F1-score Os 0.906667 0.681031 0.870588 0.925

Ch 0.666667 0.54313 0.545455 1

Ad 0.789474 0.59244 0.702703 0.820513

MSC 0.90625 0.765411 0.813559 0.918033

Per-class precision [%] Os 97.14286 81.10073 82.22222 92.5

Ch 55.55556 48.80086 60 100

Ad 88.23529 67.64129 81.25 88.88889

MSC 82.85714 71.9538 80 87.5

Per-class recall [%] Os 85 62.432 92.5 92.5

Ch 83.33333 69.86482 50 100

Ad 71.42857 56.5117 61.90476 76.19048

MSC 100 84.94492 82.75862 96.55172

Per-class specificity [%] Os 98.21429 88.27275 85.71429 94.64286

Ch 95.55556 93.38279 97.77778 100

Ad 97.33333 91.42367 96 97.33333

MSC 91.04478 83.01667 91.04478 94.02985

Overall accuracy [%] 86.45833 68.40226 80.20833 90.625

Overall specificity [%] 95.48611 89.46742 93.40278 96.875
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Figure 7. MeD-P provided accurate predictions of representative biomaterial-induced hMSCs lineage fate. A) The scheme of model application. MeD-P 
was used to evaluate the regenerative potential of representative biomaterials. Briefly, hBM-MSCs were cultured on biomaterials and harvested for 
RNA-seq after 7 days of culture. Processed RNA-seq data were loaded into the model and generated a report predicting tri-lineage differentiation 
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by Alizarin Red S (ARS) staining on day 21 (Figure  7D). The 
differentiation scores showed that after incubation with β-TCP 
scaffolds, hBM-MSCs yielded higher osteogenic differentia-
tion scores compared with the blank control (Figure S4F, Sup-
porting Information). Upon examining the expression levels of 
several osteogenic marker genes such as ALPL, RUNX2, and 
COL1A2, it was noticed that the expression of these genes was 
upregulated after culturing cells on the β-TCP scaffolds for  
7 days, which was comparable with the osteogenic induction 
medium (Figure S4G, Supporting Information).

MeD-P predicted the highest probability of adipogenesis for 
hBM-MSCs cultured in the AL group, and the highest proba-
bility of osteogenensis for hBM-MSCs cultured in the RD group 
(Figure 7E,F). The osteogenic differentiation of hBM-MSCs cul-
tured in the RD group was validated by ARS staining on the 
21st day of cell culture (Figure 7G). The microscopy images and 
relative quantification of stained mineralized nodules demon-
strated that the RD group had stronger osteo-inductive capacity 
than the AL group. Additionally, hBM-MSCs cultured in the 
RD group also yielded a much higher osteogenic differentia-
tion score than the AL group (Figure S5C, Supporting Infor-
mation). Examining the gene expression profiles revealed that 
several adipogenic marker genes had higher expression levels 
in the AL group, while several osteogenic marker genes had 
higher expression levels in the RD group on the 7th day of cell 
culture (Figure S5D, Supporting Information), which was con-
sistent with the MeD-P prediction. Similarly, MeD-P predicted 
that the SLA-treated Ti-6Al-4V substrates strongly induced 
osteogenic differentiation of hBM-MSCs with 100% probability 
(Figure  7H,I), which was validated by the upregulated expres-
sion of the pro-osteogenic growth factor BMP2 on the 3rd day 
of culture (Figure  7J). The osteo-inductive capacity of SLA-
treated Ti-6Al-4V substrates was also validated by its increased 
osteogenic differentiation score, as well as expression of several 
osteogenic marker genes such as ALPL, BMP2, and OPTN on 
the 7th day (Figure S6E,F, Supporting Information).

Reports of MeD-P showed that the polarized BTO NPs/
P(VDF-TrFE) nanocomposite membranes had a prevailing 
osteogenic induction potential (Figure  8A,B), which was veri-
fied by ARS staining on the 21st day of cell culture and upregu-
lated expression of the pro-osteogenic growth factor BMP2 on 
the 3rd day of cell culture (Figure 8C,D). It was also shown in 
the MeD-P predicted reports that the l-phenylalanine hydrogel 
could induce the osteogenesis of hBM-MSCs, while the 
d-phenylalanine hydrogel obviously promoted adipogenesis 
(Figure  8E,F). The chirality-dependent lineage specification 
of mesenchymal stem cells was validated by alkaline phos-
phatase (ALP) staining and Oil Red O staining after incubation 
of hBM-MSCs for 14 days in chiral phenylalanine hydrogels 
(Figure 8G), which were consistent with our published research 

results.[35b] The differentiation scores and gene expression pat-
terns of hBM-MSCs on the 7th day of culture was consistent 
with the MeD-P predictions for both the piezoelectric BTO 
NPs/P(VDF-TrFE) membranes (Figure S7F,G, Supporting 
Information) and chiral hydrogel matrices (Figure S8C,D, Sup-
porting Information).

In this section, MeD-P was applied for assessing the func-
tion of biomaterials in regulating stem cell lineage fate, 
demonstrating its excellent performance in predicting 
biomaterial-induced hMSCs lineage fate accurately at as early 
as the 7th day of culture. Taken together, these results thus sug-
gest that MeD-P provides a robust, accurate, and quick predic-
tion of biomaterial-induced hMSCs lineage fate.

3. Discussion

Biological performance evaluation is a key process in regenera-
tive biomaterials research.[37] In particular, the ability to regu-
late stem cell lineage fate is crucial to the clinical translation 
potential of newly-developed biomaterials.[3b,38] However, cur-
rent laboratory techniques are limited with regards to stem 
cell lineage fate characterization. For example, the validation of 
MSCs differentiation by conventional staining methods such as 
Alizarin Red S staining, Oil Red O staining, and Alcian Blue 
staining does not guarantee data reproducibility. Alternatively, 
MeD-P is able to eliminate batch differences of MSCs-related 
RNA-seq data from different laboratories or batches to a certain 
extent, thus providing a way to improve the reproducibility of 
MSCs-related data. Moreover, the staining methods are rather 
time-consuming, and usually take several days to determine 
the lineage fate of MSCs differentiation, for example, 21 days 
for ARS staining to observe mineralized nodules (osteogenic 
differentiation).[39] In our study, the default model in MeD-P 
can accurately predict the lineage fate direction on 90.63% of 
testing samples, most of which (45 out of 78) were harvested 
after 1–3 days of induction, as shown in Data file S3, Sup-
porting Information, which means significant time-savings for 
evaluation of stem cell lineage fate prediction. For character-
izing MSC-biomaterial interactions, day 7 is a common time-
point for early differentiation evaluation.[35] In this study, we 
chose to harvest RNA-seq samples on day 7 for representative 
biomaterials evaluation.

Additionally, common molecular labeling techniques can 
be restricted by limited current understanding of canonical 
biomarkers of MSCs differentiated cell types, and may also 
be affected by many experimental variables, such as labora-
tory equipment and testing agent.[6c,8,11] Hence, comparison of 
regenerative potential of different biomaterials based on cur-
rent approaches might not be easily carried out. It is rather 

probabilities. B,C) The differentiation probabilities obtained from MeD-P predicted the osteo-inductive function of β-TCP scaffolds. D) Representa-
tive ARS staining microscopy images of hBM-MSCs after 21 days of cultivation on β-TCP scaffolds. E,F) The differentiation probabilities obtained 
from MeD-P predicted the adipo-inductive and osteo-inductive functions of aligned (AL) and randomly-oriented (RD) PLLA nanofibrous membranes 
respectively. G) Representative i) ARS staining microscopy images and ii) relative ARS quantification of hBM-MSCs after 21 days of cultivation on PLLA 
nanofibrous membranes. H,I) The differentiation probabilities obtained from MeD-P yielded strong osteo-inductive function of the SLA-treated Ti-6Al-
4V alloy substrates. J) Representative i) immunofluorescence microscopy images and ii) mean fluorescence intensity of BMP2 protein expression in 
hBM-MSCs after 3 days of incubation on Ti-6Al-4V alloy substrates. Error bars represent standard error of the mean, n = 3. **p < 0.01, indicating a 
statistically significant difference.
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Figure 8. MeD-P predicted the mesenchymal stem cell lineage fate regulated by electroactivity and chirality accurately. A,B) The differentiation prob-
abilities obtained from MeD-P predicted the osteo-inductive function of unpolarized (UP) and polarized (P) BTO NPs/P(VDF-TrFE) membranes.  
C) Representative i) ARS staining microscopy images and ii) relative ARS quantification of hBM-MSCs after 21 days of incubation on BTO NPs/P(VDF-
TrFE) membranes. D) Representative i) immunofluorescence microscopy images and ii) mean fluorescence intensity of BMP2 protein expression in 
hBM-MSCs after 3 days of incubation on BTO NPs/P(VDF-TrFE) membranes. E,F) The differentiation probabilities obtained from MeD-P predicted 
the osteo-inductive function of l-phenylalanine chiral hydrogel (LH) matrices and adipo-inductive function of d-phenylalanine chiral hydrogel (DH) 
matrices after 7 days of cultivation. G) ALP and lipid droplet i) staining microscopy images and ii) the relative quantification of hBM-MSCs after 14 
days of incubation, indicating that the LH matrices significantly enhanced the osteogenic lineage commitment, and that the DH matrices significantly 
promoted adipogenic lineage commitment. Error bars represent standard error of the mean, n = 3. **p < 0.01, ***p < 0.001, indicating a statistically 
significant difference.
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challenging to precisely identify the physicochemical factors of 
biomaterials that can induce lineage-specific MSCs differentia-
tion, which thus limits the development of related therapeutic 
applications.[40] Through data adjustment in MeD-P, the batch 
variation effect between the testing dataset and the training 
gene expression reference can be alleviated, which means that 
MeD-P is capable of comparing RNA-seq data generated by 
various types of biomaterials from different laboratories. The 
inductive function of biomaterials on hMSCs lineage fate is 
evaluated based on three aspects: osteogenic, chondrogenic, 
and adipogenic differentiation. Compared with conventional 
methods, the inductive potential of biomaterials in regulating 
stem cell lineage fate can be more intuitively and comprehen-
sively evaluated and compared by this artificial intelligence-
based assessment model.

In this study, we explored the strategy of using transcriptome 
as the basis for stem cell lineage identification, and constructed 
an intelligent model for the assessment of hMSCs lineage 
fate based on big data and machine learning. By comparing 
the transcriptome to be tested with the gene expression refer-
ence of hMSCs tri-lineage differentiation, the performance of 
biomaterials in regulating hMSCs differentiation toward the 
osteogenic, chondrogenic, and adipogenic lineages can be accu-
rately evaluated by this artificial intelligence-based assessment 
model. As observed, our data-driven machine learning model 
is capable of deciphering stem cell lineage fate independent 
of prior knowledge because the selected lineage-specific gene 
expression reference outperforms known canonical lineage-
specific marker genes as the training features.

As a novel technique for evaluating stem cell lineage fate, 
the artificial intelligence-based assessment model we proposed 
was validated to be accurate, robust, practical and batch-inde-
pendent in estimating the inductive potential of biomaterials in 
regulating lineage-specific differentiation of MSCs. Assessment 
reports generated by MeD-P deduced that 3D-printed β-TCP 
scaffolds, randomly-oriented PLLA nanofibrous membranes, 
sandblasting with large grit and acid-etching treated titanium 
substrates, BTO NPs/P(VDF-TrFE) nanocomposite membranes 
and left-handed phenylalanine chiral hydrogels exhibited pre-
dominantly osteoinductive function, whereas the aligned PLLA 
nanofibrous membranes and right-handed phenylalanine chiral 
hydrogels exhibited superior adipoinductive function. These 
results are consistent with the results of traditional evaluation 
methods and the results of previous studies and revealed the 
phenylalanine chiral hydrogel’s potential in chondrogenic reg
ulation.[35a,b,36b,c,41] More importantly, MeD-P yields excellent 
accuracy and reliability in the evaluation of osteo-inductive 
and adipo-inductive biomaterials at as early as the first week of 
MSCs culture, which is much quicker than the time required 
for conventional cellular staining techniques such as ARS 
staining. Moreover, the experimental process is simpler, more 
economical, and environmentally friendly, as compared to other 
evaluation techniques such as immunofluorescence and qPCR. 
The artificial intelligence-based assessment model can compre-
hensively evaluate the tri-lineage differentiation probabilities of 
stem cells regulated by the materials, which is consistent with 
the practical reality of complex interactions between biomate-
rials and cells in vivo. Notably, data processing methods have 
taken the experimental batch effects across laboratories and 

materials into consideration, so MeD-P is batch-independent 
and easily implemented for further evaluation of biomaterials.

Nevertheless, further improvements are required for MeD-P 
to extend its functions. Considering the limitations of gene 
expression data in representing the precise cell differentiation 
state, we will take the potential effects of other omics data such 
as proteomics and methylomics into account.[42] Moreover, 
opinions of researchers on the exact timepoints at which cells 
start to display their transcriptomic features are inconsistent, 
so the earliest harvesting timepoints for effective prediction 
by MeD-P therefore need to be clarified in further research 
depending on the characteristics of biomaterials. We would do 
more work in testing MeD-P using various biomaterials at even 
earlier timepoints. Furthermore, sophisticated and special-
ized materiomic analysis tools are required to keep pace with 
increasing biomaterial-derived data. Parameterizing the phys-
icochemical properties of materials would be helpful for under-
standing the relationship between the physicochemical param-
eters of materials and their biological potential.[1a,13b] In future, 
researchers will be invited to use MeD-P or add their RNA-seq 
and physicochemical data. The expansion of the regenerative 
biomaterial RNA-seq database will play an important role in 
elucidating the biological mechanisms of biomaterial-driven 
tissue regeneration. This has much potential in deciphering 
the physicochemical parameters of biomaterials that influence 
lineage-specific MSCs differentiation, thus facilitating the pro-
gress of biomaterial design strategies.

4. Conclusion

Overall, this study offers a convenient tool, MeD-P, for the iden-
tification of MSCs lineage fate directions, thereby providing an 
efficient, cost-effective, and batch-independent strategy for the 
functional evaluation and performance optimization of bioma-
terials. To the best of our knowledge, this is the first study that 
reported constructing an artificial intelligence-based assess-
ment model based on RNA-seq data in the field of biomaterial 
evaluation. This method provides a convenient way to predict a 
biomaterial’s inductive function on stem cell lineage commit-
ment with high accuracy, and is able to compare data across 
different laboratories and materials. It has much potential in 
investigating the complex effects of various physicochemical 
parameters of biomaterials on MSCs lineage fate regulation. 
It can also be applied for standardized functional evaluation of 
biomaterials. Hence, we believe that machine learning-based 
artificial intelligence strategies can be widely used for standard-
ized functional biomaterial evaluation, which could hasten the 
progress of regenerative medicine research.

5. Experimental Section
RNA-seq Data Collection: Public RNA-seq datasets related to the tri-

lineage differentiation of hMSCs (osteogenesis, chondrogenesis, and 
adipogenesis) were collected from the Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (https://www.ebi.
ac.uk/arrayexpress/) repository. Twelve transcriptome datasets meeting 
the following requirements were included: 1) Transcriptome data were 
obtained based on next-generation sequencing technology; 2) Raw 
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.fastq format sequencing data were saved in the database; 3) There were 
sequencing data both before and after the induction of differentiation;  
4) The hMSCs used in the induction experiments must meet the minimal 
criteria  of MSCs, including i) the ability to self-renew, ii) multipotency 
with osteogenic, chondrogenic, and adipogenic differentiation 
potentials, which were verified by conventional staining methods such 
as Alizarin Red S staining, Oil Red O staining, and Alcian Blue staining, 
and iii) expression of a characteristic set of canonical MSC surface 
markers, such as CD73, CD90, and CD105, while lacking expression of 
CD14, CD34, CD45, and human leukocyte antigen-DR (HLA-DR).

RNA-seq Data Preprocessing: Raw .fastq data were filtered with fastp 
(version 0.20.1) software to remove adapters, low-quality sequences, and 
repetitive sequences.[43] The rRNA sequences were then removed using 
bowtie2 (version 2.4.2) software with default settings.[44] Clean data were 
obtained as .fastq format. STAR (version 2.7.6a) software was then used 
to align the clean data to the genome (Homo sapiens, GRCh38),[45] 
resulting in generation of the .bam file. The featureCounts function in the 
Subread (version 2.0.1) software was used to count the number of reads 
aligned to a gene or transcript,[46] to obtain a quantitative expression 
matrix at the transcript level. Finally, the transcripts were converted into 
gene names according to the Ensemble ID, and the average of multiple 
transcripts corresponding to the same gene was calculated and rounded 
up to obtain the raw count matrix at the gene level. The data format is 
Nm1×n, where N is a natural number, m1 is the number of genes, and n is 
the number of samples.

Unqualified Sample Screening: Hierarchical cluster analysis was used 
to screen unqualified samples by distinguishing the data dissimilarity 
based on the whole-genome gene expression matrix. The dissimilarity 
was calculated by Euclidean distance among samples, and the 
agglomeration method was set as “average.” The hclust function 
in R package stats (version 3.6.1) was applied to generate a cluster 
dendrogram,[47] where the samples above the manual cut-off redline 
were supposed to be outliers and excluded in further analyses.

Allocation of Training, Validation, and Testing Data Sets: Five RNA-seq 
datasets were selected out of the twelve public RNA-seq datasets to feed 
the machine learning models. These samples were further divided into 
various splits of the training and validation sets by random sampling, 
which was referred to as cross-validation,[48] for the purpose of training 
and optimizing the parameters in the machine learning models. Briefly, 
70% of samples in each cell type within the training datasets were 
randomly selected as the training set, while the remaining samples 
were collected as the validation set. The other seven RNA-seq datasets 
were used as the testing set for benchmarking the performance of the 
machine learning models.

Batch Effect Adjustment: The methods were different between the 
training datasets and testing datasets. For the five training datasets, the 
ComBat_seq function in the R package ComBat-seq was used to adjust 
the raw gene expression count matrix to fit with the estimated “batch-
free” negative binomial distribution,[49] where the group parameter 
was set as sample class, and the batch parameter was set as dataset 
accession. The DaMiR.normalization and DaMiR.SVadjust function in 
the R package DaMiRseq was then successively used to adjust the gene 
expression distribution at the sample level and the confounding factors 
related to batch effects.[50] The format of the adjusted gene expression 
matrix was Q+m2×n, where Q+ is a positive rational number, m2 is the 
number of genes after filtering low-abundance expressed genes, and 
n is the number of samples in the training datasets. By combination 
and optimization of ComBat-seq and DaMiRseq, the training datasets 
were adjusted in both the gene expression distribution within biological 
replicates using the negative binomial regression model and the 
library sizes among samples across batches using variance stabilizing 
transformation (VST).[51] For the seven testing datasets, the gene 
expression matrices were adjusted separately. In detail, by taking 
one of the seven testing datasets as an example, the ComBat_seq 
function in the R package ComBat-seq was used to adjust the raw gene 
expression count matrix, which was integrated by the specific testing 
dataset and five training datasets, where the group parameter was set 
as “NULL,” and the batch parameter was set as dataset accession. 

Then the DaMiR.iTSnorm function in the R package DaMiRseq was 
applied to adjust the testing dataset at the sample level, using the gene 
expression distribution of samples in the training datasets as references. 
Similarly, other testing datasets were adjusted individually. Notably, the 
parameters concerning the sample classes were always set as unknown 
when adjusting the testing datasets. So that the batch effect between the 
testing data and the training data could be identified and adjusted by the 
algorithms without manual interference.

Feature Selection and Extraction: The DESeqDataSetFromMatrix 
function in the R package DESeq2 was applied on the adjusted training 
data matrix to identify differentially expressed genes among the three 
differentiation lineage directions of hMSCs.[52] For example, in the case of 
osteogenesis-specific feature selection, the osteogenic samples were set 
as the experimental group, and the other three classes (chondrogenesis, 
adipogenesis, undifferentiated) as the control group respectively, and 
selected three gene sets that were highly expressed in the experimental 
group compared with the three control groups respectively, whereby the 
fold change was set as greater than 10 and the adjusted p-value was 
set as less than 0.001. Then the highly expressed osteogenesis-specific 
gene list was combined by taking the concatenation of the three gene 
sets. Similarly, feature genes were selected for the other classes. The 
concatenation of four characteristic gene lists were collected as the 
overall feature genes. The filter function in the R package tidyverse 
was then used to extract the characteristic gene expression matrix of 
samples,[53] and the data format was Q+m3×n, where m3 is the number of 
selected characteristic genes.

Data Visualization: The batchQC function in the R package BatchQC 
was occupied in the visualization of the gene expression distribution 
at the sample level with histograms and circular dendrograms.[54] The 
t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm was 
applied for visualizing samples with a 2D plot using the TSNEPlot 
function in the R package Seurat (version 4.0.5).[55] The visualization 
of gene expression profiles was implemented using the Heatmap 
function in the R package ComplexHeatmap.[56] The plot_ly function in 
the R package plotly was used to visualize the sample clustering in a 
3D plot of the principal component analysis (PCA).[57] The hierarchical 
clustering dendrogram was generated by hclust function in R package 
stats (version 3.6.1).[47] The normalized gene expression patterns of 
house-keeping genes and cell-type specific differentiation marker 
genes were visualized using the qplot function in R package ggplot2  
(version 3.3.3).[58]

Machine Learning Models Implementation and Cross-Validation: Nine 
popular multi-class machine learning methods were adopted, which 
were Support Vector Machine with radial basis function kernel or linear 
kernel (SVM-R and SVM-L), Random Forest (RF), Gaussian Naive 
Bayes (GNB), Linear Discriminant Analysis (LDA), Logistic Regression 
(LR), Multi-layer Perceptron (MLP), RidgeClassifierCV (RidgeCV), 
and k-nearest neighbors (kNN). Models were iteratively trained and 
optimized based on the gene expression reference to classify the hMSCs 
lineage fate directions with modules in the python package sklearn.[59] 
The hyperparameters of the models were optimized by cross-validation 
in every single random sampling by learning to fit the classification 
task.[48]

Performance Evaluation of Machine Learning Models: The performance 
of nine models (SVM-R, SVM-L, RF, GNB, LDA, LR, MLP, RidgeCV, kNN) 
on identifying unknown data was evaluated using accuracy, f1-score, 
precision, recall, specificity, and the area under the receiver operating 
characteristic (ROC) curve (AUROC).[33,60] These overall and per-class 
metrics were calculated on adjusted testing datasets. In particular, for 
the per-class metrics, a binary classifier for each class was implemented 
with the one-versus-rest method.[25] In binary classification tasks, 
the result of the model on one sample could be one of four cases:  
the positive sample be predicted as positive (True Positive, TP), the 
positive sample be predicted as negative (False Negative, FN), the negative 
sample be predicted as positive (False Positive, FP), and the negative 
sample be predicted as negative (True Negative, TN).[60] The accuracy 
of a model referred to the proportion of the correctly predicted samples 
(TP+TN) in the overall samples (TP+TN+FP+FN). Precision referred 
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to the proportion of the samples that the model correctly predicts as 
positive (TP) in the total samples that the model predicts as positive 
(TP+FP). Recall was the proportion of the samples that the model 
correctly predicted as positive (TP) in the total samples that were 
actually positive (TP+FN). The f1-score was defined as the harmonic 
mean of precision and recall, that is, the reciprocal of the average of the 
reciprocals of precision and recall. The specificity, also known as the true 
negative rate, was the proportion of the samples correctly predicted to 
be negative by the model (TN) in the total samples that were actually 
negative (TN+FP). The formulas are as listed below:

Accuracy TP TN
TP TN FP FN

= +
+ + +  (1)

Precision TP
TP FP

= +  (2)

Recall
TP FN

E= +  (3)

1 score
2 precision recall

precision recall
f − = × ×

+  (4)

Specificity TN
TN FP

= +  (5)

For multi-class classification tasks like the task in this study, the 
overall f1-score and accuracy were the same value. The basis is as 
follows:[34]

Let K be the number of categories. TP, FP, TN, and FN denoted the 
sample number of True Positive, False Positive, True Negative, and False 
Negative, respectively, and the subscript i denoted the category to which 
they belong.
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From the four equations above, it can be obtained: Fmicro = Pmicro = 
Rmicro = Accuracy.

The Classification Visualization module in the python package 
Yellowbrick was used to visualize the per-class accuracy, precision, 
recall, and f1-score with the classification report and confusion matrix.[61]

Fabrication of 3D-Printed β-TCP Scaffolds: 3D-printed β-TCP scaffolds 
were fabricated using 3D-printing technique based on protocols 
described in previous study.[41] In detail, 1.8  g β-TCP powders, 0.1  g 
sodium alginate powders (Alfa Aesar, low viscosity), and 1.8  g of 
Pluronics F-127 solution (20 wt%, Sigma-Aldrich, USA) were mixed and 
homogeneously stirred to prepare injectable β-TCP inks. Then β-TCP 
scaffolds were generated by 3D scaffold printer (Dresden, Germany) 
using β-TCP inks via a dosing pressure of 1.5–2.5  bar and a moving 
speed of 3 mm s−1. The 3D-printed β-TCP scaffolds were dried at room 
temperature for 24 h and then sintered at 1100 °C for 3 h.

Fabrication of Electrospun PLLA Nanofibrous Membranes: Aligned 
(AL) and randomly-oriented (RD) PLLA nanofibrous membranes 

were fabricated using electrospinning techniques, based on protocols 
described in previous study.[36b] 1.4  g PLLA powders and 20  mL of 
trifluoroethanol were mixed and stirred overnight to prepare the 
precursor solution. Then the solution was loaded into a 20 mL syringe 
with a steel needle (inner diameter: 0.5  mm) and ejected at a rate of 
0.7  mL h−1 using a programmable syringe pump (Top 5300, Japan). 
An unremitting voltage (16  kV) was provided to the tip of the needle 
along with ejecting fluids using high-voltage equipment (DW-P303–1AC, 
China). Meanwhile, a metal plate (20–25 cm2) was used as a collector 
at a distance of 15  cm from the tip of the needle to obtain randomly-
oriented PLLA nanofibrous membranes and a cylindrical drum, which 
rotated at a surface linear rate of 12 m s−1, was used to obtain aligned 
PLLA nanofibrous membranes. Then all nanofibrous membranes 
were kept in a vacuum oven (DZF- 6210, Bluepard, China) at room 
temperature for 2 weeks for solvent volatilizing.

Fabrication of Sandblasting with Large Grit and Acid-Etching Treated 
Ti-6Al-4V Substrates: White corundum with a particle size of 250–
300  µm was used to sandblast the pure titanium substrates uniformly 
at a distance of 3–5  cm under standard atmospheric pressure. Then 
samples were ultrasonically cleaned with acetone, anhydrous ethanol, 
and deionized water for 10 min and dried. Subsequently, the sandblasted 
titanium substrates were placed in an acid etching solution mixed with 
an equal volume of 18% HCl and 48% H2SO4 at 60 °C for 30 min. Then 
substrates were ultrasonically cleaned with deionized water 3 times 
for 15  min each time and placed in a vacuum oven at 55  °C for 12  h. 
Ti-6Al-4V substrates with polished surfaces were prepared as a control.

Fabrication of BTO NPs/P(VDF-TrFE) Nanocomposite Membranes: 
Electroactive BTO NPs/P(VDF-TrFE) nanocomposite membranes were 
fabricated using film-casting and corona poling techniques.[35a] BTO NPs 
(99.9%, average particle size of 100 nm, Alfa Aesar) were first dispersed 
by ultrasonication in 0.01  mol L−1 of dopamine hydrochloride (99%, 
Alfa Aesar) aqueous solution and stirred for 12  h at 60  °C to obtain 
polydopamine-modified BTO NPs. For the fabrication of nanocomposite 
membranes, 0.356 g polydopamine-modified BTO NPs and 2 g P(VDF-
TrFE) (65/35 mol% VDF/TrFE) copolymer powders were dispersed in 
20  mL of N,N-dimethylformamide (DMF) by ultrasonic treatment for 
3  h, followed by stirring overnight, to form a stable suspension. The 
suspension was then cast into membranes on a particular glass and 
dried at 55  °C for 12  h to remove residual solvent. For polarization 
treatment, the BTO NPs/P(VDF-TrFE) nanocomposite membranes were 
placed in the center area of the metal stage of the corona polarimeter, at 
a distance of 20 mm with the electrode head whose loading voltage was 
set as 20 kV. Each sample was polarized for 30 min.

Fabrication of Phenylalanine Chiral Hydrogel: Phenylalanine chiral 
hydrogel matrices were fabricated using self-assembly techniques.[35b] 
Briefly, 6.0  g d-phenylalanine methyl ester hydrochloride (Aladdin 
Chemicals, China) was dissolved in a mixture of 8.0 mL of triethylamine 
(Et3N, Aladdin Chemicals, China) and 100  mL of dry dichloromethane 
(DCM, Sigma-Aldrich, America) and stirred at room temperature 
for 24  h. Then 2.6  g 1,4-benzenedicarbonyl dichloride in 20  mL of dry 
DCM was added dropwise to the solution. After evaporating solvents, 
the residues were subsequently dissolved in 100  mL of ethanol. After 
filtration, the undissolved substance was collected and dried to obtain 
p-Ph-(d-Phe-OMe)2 (5.3  g). Then 10  mL of aqueous NaOH (2.0  m) 
was added to a suspension of 3.0  g p-Ph-(d-Phe-OMe)2 in 20  mL of 
methanol and stirred for 24 h. The solution was then acidified with 3.0 m 
HCl until achieving a pH value less than 3.0 to form a gel sediment. 
Then the gel was washed with deionized water, and dried in a vacuum 
oven for 12 h to produce p-Ph-(d-Phe-OH)2 (2.6 g, d-Phenylalanine chiral 
hydrogel matrices). Similarly, p-Ph-(l-Phe-OH)2 was prepared (2.8  g, 
l-Phenylalanine chiral hydrogel matrices).

Characterization, Culture, and Tri-Lineage Differentiation Induction of 
hBM-MSCs: Primary human BM-MSCs used in biological experiments 
were purchased from and characterized by Cyagen Bioscience Inc. 
(Guangzhou, China). Cryopreserved hBM-MSCs in passage 2 were thawed 
and then cultured in mesenchymal stem cell medium (MSCM, ScienCell, 
USA) supplemented with 5% v/v fetal bovine serum (FBS), 1% v/v 
growth supplements (MSCGS), and 100 IU mL−1 penicillin−streptomycin  
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at 37 °C and 5% CO2. The culture medium was changed every 2–3 days. 
Upon reaching 80–90% confluence, hBM-MSCs were detached with 
0.25% w/v trypsin/ethylenediaminetetraacetic acid (EDTA) (Gibco). 
The cells from the third to fifth passages were used in this study. The 
surface antigen expression of hBM-MSCs were characterized by flow 
cytometry analysis using the OriCell human MSC analysis kit (Cyagen 
Bioscience Inc., Guangzhou, China) following the manufacturer’s 
protocol, including the utilization of fluorescein isothiocyanate (FITC)−
conjugated antibodies specific to cell surface antigens CD29, CD166, 
CD105, CD73, CD44, CD14, CD45 CD34, CD11b, and HLA-DR. The data 
were analyzed using NovoExpress 1.4.1. According to the manufacturer’s 
instructions, osteogenic, chondrogenic, and adipogenic induction were 
carried out using mesenchymal stem cell osteogenic differentiation 
medium (MODM, ScienCell, USA), chondrogenic differentiation 
medium (MCDM, ScienCell, USA), and adipogenic differentiation 
medium (MADM, ScienCell, USA), respectively. In particular, pellets 
were formed with 2.5 × 105 cells (500 µL) in each 15 mL conical tube for 
chondrogenic induction. The tri-lineage differentiation potential of hBM-
MSCs were validated by Alizarin Red S (ARS), Oil Red O staining on D14 
after osteogenic or adipogenic induction, and Alcian Blue staining on 
D21 after chondrogenic induction.

Cell Seeding on Biomaterials: 3D-printed β-TCP scaffolds, PLLA 
nanofibrous membranes, sandblasted and acid-etched Ti-6Al-4V alloy 
substrates, and BTO NPs/P(VDF-TrFE) nanocomposite membranes 
were placed in 6-well or 24-well plates after cobalt-60 irradiation and 
disinfection. 200∼500 µL of complete medium was added to each well 
for pre-infiltration for 2 h to facilitate cell adhesion. hBM-MSCs from the 
third to fifth passages were digested with trypsin and uniformly seeded 
on the surface of the biomaterials or the pore structure of the scaffolds 
at a density of 2 × 105 cells mL−1 after suspension, and then incubated 
at 37 °C in a humidified atmosphere with 5% CO2. The culture medium 
was changed every 2–3 days.

Cell Seeding in 3D Phenylalanine Chiral Hydrogel Matrices: hBM-
MSCs suspension (1 × 106 cells mL−1) were initially encapsulated within 
a concentrated solution of the hydrogel matrices gelator (final gelator 
concentration: 3 mg mL−1) in DMSO (final DMSO concentration: 3.3% 
v/v). The self-supporting matrices were formed within several minutes. 
Then, more complete medium was added to the matrices and incubated 
under standard culture conditions (37 °C, 5% CO2). The culture medium 
was changed every 2–3 days.

Total RNA Extraction, Library Construction, and Transcriptome 
Sequencing: After differentiation induction or incubation with 
biomaterials, hBM-MSCs were harvested in Trizol (Ambion) on day 
7 of culture. Total RNA from MSCs was extracted using an RNAprep 
Pure Kit for Cell/Bacteria (TIANGEN) according to the manufacturer’s 
instructions. The quality of purified RNA was checked by NanoDrop 
ND-1000 (NanoDrop, Wilmington, DE, USA). A high-throughput 
paired-end RNA sequencing library was constructed according to 
the standard Illumina mRNA library preparation protocol (Illumina, 
Inc.). Sequencing was performed according to the paired-end DNA 
sequencing protocols from Illumina on an HiSeq6000 system with a 
paired-end module (Illumina, Inc.). A total of 150  bp were sequenced 
from each side of a fragment that was ≈300 bp in length.

Differentiation Scores Calculation: As shown in Table S1, Supporting 
Information, 95 canonical marker genes related to the osteogenesis, 
chondrogenesis, adipogenesis, and undifferentiated state of hMSCs 
were obtained based on the literature review and their presence in the 
adjusted training gene expression matrix. The expression characteristics 
of these genes are listed in Data file S4, Supporting Information, as the 
supplement to Table S1, Supporting Information, concerning the tri-
lineage differentiation of hMSCs. The marker gene expression profiles 
of biomaterial-induced hMSCs were extracted using the filter function in 
the R package tidyverse. The AddModuleScore module in Seurat (version 
4.0.5) was used to obtain the osteogenic, chondrogenic, adipogenic 
differentiation, and undifferentiated scores of samples by calculating the 
average canonical marker gene expression levels of each cell type.

Batch Effect Adjustment for Biomaterial-Generated RNA-seq Data: The 
gene expression matrix was adjusted separately for each biomaterial. 

Likewise, the ComBat_seq function in the R package ComBat-seq was 
used to adjust the raw gene expression count matrix that integrated the 
independent testing dataset with training datasets,[49] where the group 
parameter was set as “NULL,” and the batch parameter was set as the 
dataset accessions. Then the DaMiR.iTSnorm function in the R package 
DaMiRseq (version 1.10.0) was used to adjust the testing dataset at the 
sample level according to the gene expression distribution of samples in 
the training datasets.[50] Notably, the parameter concerning the sample 
classes was set as unknown in adjusting the testing datasets.

Physicochemical Characterization of Biomaterials: The surface 
morphologies and molecular structures of biomaterials were 
characterized by field emission scanning electron microscopy (FE-
SEM, S-4800, HITACHI, Japan). The elemental maps were obtained 
by Energy dispersive spectrometer (EDS) in the mapping mode. The 
surface roughness of the sandblasted and acid-etched Ti-6Al-4V alloy 
substrates was analyzed by white light interferometer (ContourGT-I, 
Bruker, America). The diffraction pattern of the β-TCP scaffolds was 
examined by X-ray diffraction (XRD) to analyze its crystal structure. 
For the electrical property characterization, the membranes were first 
treated by corona poling under a DC field of 13 kV at room temperature 
for 30 min. The quantitative analysis of the surface potential distribution 
was evaluated by Kelvin Probe Force Microscopy using commercially 
available Pt-coated Si probes (SCM-PIT, Bruker, America). The hysteresis 
loop was analyzed using a commercial ferroelectric analyzer setup 
(TF1000, aix ACCT Systems GmbH, Germany) with a maximum field 
amplitude of 4 kV mm−1 at a frequency of 0.5 Hz. For the degradability 
evaluation, the 3D printed β-TCP scaffolds were immersed in Tris-HCl 
(pH = 7.4) buffer at 37 °C with the ratio of solvent volume and mass at 
200 mL g−1 for 1, 3, 5, 7, 14, and 21 days. The concentrations of Ca and P 
elements in the collected solutions were measured using an inductively 
coupled plasma emission spectrometer (ICP-OES, Agilent 5110, Agilent, 
America). Three parallel samples were used to obtain the average value.

Alizarin Red S, Oil Red O, Alcian Blue, and Alkaline Phosphatase 
Staining: Cultured cells were fixed at the indicated time points with 4% 
w/v paraformaldehyde for 30 min and stained with Alizarin Red S (1% 
w/v solution in water; pH 4.2, Solarbio), Oil Red O (300  mg mL−1 Oil 
Red O in isopropanol diluted 60:40 in water, Sigma-Aldrich) for 30 min 
and washed several times with water. Chondrogenic pellets were fixed 
with 4% w/v paraformaldehyde for 30  min, eluted using an ethanol 
gradient, embedded in paraffin, sliced into 4  µm sections, and further 
stained with Alcian Blue for 15 min. Microscopy images were obtained 
using a 10×, 20×, or 40× phase-contrast objective on a Leica DM IRB/E 
microscope. Alizarin Red S and Oil Red O staining was quantified by 
extracting the color in isopropanol and measuring the absorbance at 
520  nm. ALP staining was performed using a nitro blue tetrazolium 
(NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) (NBT/BCIP) 
staining kit (Solarbio).

Immunofluorescence Analysis: After culturing on biomaterials for 3 
days, hBM-MSCs were rinsed in phosphate-buffered saline (PBS) and 
fixed in 4% w/v paraformaldehyde for 15 min. After fixation, the samples 
were washed three times with PBS for 5 min each time. Then, samples 
were then permeabilized with 0.1% w/v Triton X-100 (diluted with PBS) 
for 10 min and blocked with 3% w/v bovine serum albumin (BSA; diluted 
with PBS) for 1 h to minimize non-specific staining. After removal of the 
permeabilization solution, samples were rinsed and washed with PBS 
again. The above procedures were carried out at room temperature. 
The samples were then incubated with the primary antibody—rabbit 
anti-BMP2 antibody (1:100; ab214821; abcam) in 3% w/v BSA overnight 
at 4 °C. After thorough rinsing with PBS to remove excess antibodies, 
the cells were incubated with goat anti-rabbit IgG H&L (Alexa Fluor 
488) pre-adsorbed secondary antibody (2 µg mL−1; ab150081; abcam) 
for 1 h in darkness. 4′,6-Diamidino-2-phenylindole (DAPI; Sigma) was 
used to stain the cell nuclei. TRITC-labeled phalloidin was used to stain 
the cytoskeletal f-actin. Images of three random fields of vision were 
captured with a confocal laser scanning microscope (Leica).

Quantitative Real-Time PCR Analysis: After differentiation induction, 
total cellular RNA from hBM-MSCs were harvested using Trizol 
(Ambion) on D7 of culture according to the manufacturer’s instructions. 
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Amplifications were then performed with different primers. The quality  
and quantity of the RNA obtained were subjected to spectrophotometric 
analysis using a bio-photometer (Thermo Scientific NanoDrop8000). The 
RNA was then reversed-transcribed into complementary DNA (cDNA) 
using a Reverse Transcription kit (Takara Bio Inc., Japan). Quantitative real-
time polymerase chain reaction (RT-qPCR) was performed using the SYBR 
Green PCR reagent kit (Roche, Germany) on an ABI QuantStudio 3 Real-
Time PCR System (Applied Biosystems, Foster City, CA, USA). The data 
were analyzed using QuantStudio Design and Analysis Desktop software 
(Thermo Fisher Scientific). The primer sequences are listed in Table S2, 
Supporting Information. All gene expression values were normalized to 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression.

Statistical Analysis: R (version 3.6.1 and 4.1.1) was used for RNA-seq 
data processing and data visualization. Python (version 3.9.1) was 
used for machine learning training and benchmarking. All quantitative 
biological experimental data were expressed as mean ± standard deviation 
(SD). Statistical analysis was performed using the GraphPad Prism 6.01 
software. Statistical differences were evaluated using Student’s t-test 
for independent samples. Differences between groups with *p  <  0.05, 
**p < 0.01, or ***p < 0.001 were considered as statistically significant.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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