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Abstract
This study aimed to evaluate the validity of a deep learning-
based convolutional neural network (CNN) for detecting 
proximal caries lesions on bitewing radiographs. A total of 
978 bitewing radiographs, 10,899 proximal surfaces, were 
evaluated by two endodontists and a radiologist, of which 
2,719 surfaces were diagnosed and annotated with proximal 
caries and 8,180 surfaces were sound. The data were ran-
domly divided into two datasets, with 818 bitewings in the 
training and validation dataset and 160 bitewings in the test 
dataset. Each annotation in the test set was then classified 
into 5 stages according to the extent of the lesion (E1, E2, D1, 
D2, D3). Faster R-CNN, a deep learning-based object detec-
tion method, was trained to detect proximal caries in the 
training and validation dataset and then was assessed on the 
test dataset. The diagnostic accuracy, sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV), and receiver operating characteristic curve were cal-

culated. The performance of the network in the overall and 
different stages of lesions was compared with that of post-
graduate students on the test dataset. A total of 388 carious 
lesions and 1,435 sound surfaces were correctly identified by 
the neural network; hence, the accuracy was 0.87. Further-
more, 27.6% of lesions went undetected, and 7% of sound 
surfaces were misdiagnosed by the neural network. The sen-
sitivity, specificity, PPV, and NPV of the neural network were 
0.72, 0.93, 0.77, and 0.91, respectively. In contrast with the 
network, 52.8% of lesions went undetected by the students, 
yielding a sensitivity of only 0.47. The F1-score of the stu-
dents was 0.57, while the F1-score of the network was 0.74 
despite the accuracy of 0.82. A significant difference in the 
sensitivity was found between the model and the postgrad-
uate students when detecting different stages of lesions (p 
< 0.05). For early lesions which limited in enamel and the 
outer third of dentin, the neural network had sensitivities all 
above or at 0.65, while students showed sensitivities below 
0.40. From our results, we conclude that the CNN may be an 
assistant in detecting proximal caries on bitewings.
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Introduction

Dental caries is a common chronic disease that places 
a considerable burden on both individuals’ quality of life 
and healthcare systems [Peres et al., 2019]. Bitewing radi-
ography is commonly used to detect proximal caries, 
which require accurate diagnoses and early management 
and cannot be detected clinically due to tight contact sur-
faces [Gimenez et al., 2015]. Many factors, such as fatigue, 
emotions [Stec et al., 2018], and complex clinical environ-
ments [Hellén-Halme et al., 2008], could affect the accu-
racy of image interpretation. As reported by Tewary, the 
experience of clinical practice is the most influential fac-
tor [Tewary et al., 2011]. Compared with experienced ex-
aminers, low-experienced examiners were nearly four 
times as likely to make incorrect assessments when diag-
nosing proximal caries [Geibel et al., 2017].

An automated assistance system for dental radiography 
images may help to address these shortcomings by provid-
ing a reliable and stable diagnostic result, especially for less-
experienced examiners. Additionally, this system may save 
diagnostic time and improve treatment efficiency.

Artificial intelligence (AI) is a branch of applied com-
puter science that uses computer technology to simulate 
human behavior, such as intelligent activity, critical 
thinking, and decision-making [Shan et al., 2021]. Ma-
chine learning (ML), a subfield of AI, has been widely 
used in computer-aided diagnostic projects because it can 
identify meaningful patterns and structures in data and 
predict unknown data based on what it has learned [Char-
trand et al., 2017]. However, deep learning (DL), a popu-
lar ML method characterized by multilayer neural net-
works and automatic feature extraction, has replaced tra-
ditional ML methods and emerged as the dominant 
method in healthcare. Convolutional neural networks 
(CNNs), a type of DL algorithm, have achieved favorable 
results and have become a state-of-the-art method [Es-
teva et al., 2019] in medical radiological diagnostic tasks, 
such as thoracic disease [Wang et al., 2017], mammogra-
phies [Teare et al., 2017], brain imaging [Puente-castro et 
al., 2020], and retinal fundus photographs [Gulshan et al., 
2016]. To date, as a relatively novel method in the dental 
field, CNNs have been used in dentistry for a variety of 
purposes, such as determining periodontal bone loss [Lee 
et al., 2018a; Chang et al., 2020], detecting carious lesions 
[Srivastava et al., 2017; Tripathi et al., 2019; Cantu et al., 
2020; Megalan Leo and Kalpalatha Reddy, 2020; Megalan 
Leo and Kalpalatha Reddy, 2021; Bayraktar and Ayan, 
2022], segmenting apical lesions [Setzer et al., 2020], and 
identifying dental plaque [You et al., 2020].

However, only one study [Cantu et al., 2021] com-
pared the results of interpreting bitewings with those of 
dentists, and one randomized trial [Mertens et al., 2021] 
assessed the impact of AI assistance on dentists. Com-
parisons of the performance between different neural 
networks and dentists are insufficient.

The present study aimed to evaluate the performance 
of the deep neural network for detecting proximal carious 
lesions on bitewings. Faster R-CNN was chosen, sam-
pling strategy, anchor size setting, and many other pa-
rameters were adjusted to adapt to the caries detection 
task based on the training result. Then its diagnostic ef-
fectiveness was compared with that of postgraduate stu-
dents.

The remainder of this paper is organized as follows. 
Section 2 gives an overview of the material and methods. 
The image datasets, the training process, and evaluation 
approaches are described in this section. Section 3 pre-
sents the results of our experiments. Then, Section 4 dis-
cusses and analyzes the obtained results, and Section 5 
concludes the paper.

Materials and Methods

In the present study, we used Faster R-CNN, a type of CNN that 
has been widely applied for object detection in medical imaging. 
The detection network has three stages: feature extraction, lesion 
detection with region proposals, and generation of boxes for out-
putting the location of caries lesions.

Sample Size Estimation
Fisher’s exact test was used to estimate the sample size of the 

test dataset. A clustered design was used since every bitewing con-
tains multiple surfaces (about 11 surfaces on average in this study) 
which was calculated by design effect (DE) with the formula DE = 
1 + (m − 1) × ICC, in which m means cluster size, and ICC is the 
intraclass correlation coefficient. ICC of 0.2 was assumed based on 
the previous study [Meinhold et al., 2020]. According to the previ-
ously published studies, we assumed the accuracy of 0.85 for AI 
and 0.75 for the postgraduate students [Schwendicke et al., 2015], 
a study powered at 1-beta = 0.8 and with alpha = 0.05 would re-
quire 534 units in the test set. When DE = 1 + (11 − 1) × 0.2, i.e., 
3.0, the total surfaces required should be 1,602, or 146 bitewings. 
The final test dataset included in this study consisted of 160 radio-
graphs.

Dataset
The dataset included 978 bitewing radiographs that were ob-

tained during routine care at the Peking University School and 
Hospital of Stomatology in Beijing, China. The data were collected 
between November 2018 and July 2020. All the radiographs were 
obtained with the Gendex expert DC system (Gendex Dental Sys-
tem, Hatfield, PA, USA) at exposure settings of 65 kV, 7 mA, and 
an exposure time of 0.125–0.32 s. Proprietary storage phosphor 
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plates were used to record the image. Each bitewing was exported 
with a resolution of 72 dpi at a size of approximately (960–980) × 
(750–755) pixels and saved as an 8-bit “JPG” format image file with 
a unique identification code. Only bitewings of permanent teeth 
with the crowns of at least one dental arch and at least one proximal 
carious lesion were included. Images of primary teeth with no 
proximal lesions were discarded, as were those with severe noise, 
haziness, distortion, and shadows. Some samples from the dataset 
were shown in Figure 1. Since the goal of this work was to detect 
proximal carious lesions, surface-level statistics were required; the 
mesial and distal surfaces of crowns without restorations and full 
crowns were calculated independently. A total of 978 bitewing ra-
diographs were then randomly divided into the training and vali-
dation (n = 818) dataset and the testing (n = 160) dataset.

Reference Standard
Carious lesions in the bitewing radiographs were labeled by two 

endodontic experts and one radiologist with at least 5 years of rel-
evant clinical experience to establish a fuzzy gold standard (refer-
ence standard). Prior to the labeling, each expert would receive a 
handbook containing diagnostic criteria and instructions of the 
software.

The proximal caries was defined as the radiolucent area be-
tween two adjacent contacts, visible as a notch in the enamel, a 
triangular shape with the apex pointing toward the enamel-den-
tinal junction, or the area at the dentinal junction penetrating to-
ward the pulp. A bounding box was drawn by experts around each 
lesion to provide the Faster R-CNN for training and testing.

The labeling process was carried out using LabelMe (MIT, 
Cambridge, MA, USA) software, an open-source tool in computer 
vision research. In the present study, functions to adjust the bright-
ness and contrast were added to mimic clinical diagnostic condi-
tions. The screen resolution was 2,560 × 1,600, and the display 
ratio was 1:1. The images were labeled in a dimly lit room. For 
analytic purposes, each annotation in the test set was then classi-
fied into 5 stages: E1, E2, D1, D2, and D3. For a better fit with the 

real clinical situation, 5 stages were merged into three categories, 
“E1/E2” caries radiolucency in the outer or inner half of enamel; 
“D1” radiolucency in the outer third of dentin; “D2/D3” caries ra-
diolucency in the middle and inner third of dentin.

Each expert labeled independently and was checked by others. 
When disagreement arose, consensus should be reached among 
three experts by discussion. Before the images were labeled, three 
observers were calibrated on diagnosing proximal caries. To eval-
uate consistency, each expert was asked to label the lesions again 1 
week later. Fleiss kappa values were calculated to assess the Inter- 
and intra-observer agreement.

Faster R-CNN
The Faster R-CNN model included two networks: a regional 

proposal network (RPN) for generating region proposals and an 
object detector network that uses these proposals to locate and 
classify objects, such as proximal caries lesions in this study. The 
two modules share convolution layers that produce representa-
tions of the raw image known as the feature map.

The raw image was input into the basic feature extraction net-
work for convolution and pooling operations to build the feature 
map, which was then transmitted to the RPN to generate regional 
proposals. The RPN slid the window across the feature map, 
ranked the region boxes or candidate frames, which are known as 
“anchors,” and identified the regions most likely to contain ob-
jects. The RPN initially determined the position and score of the 
object to be detected. The output of the RPN, which consisted of a 
set of boxes linked by a special regressor, was then fed into the ob-
ject detection network, which refined the score of the boxes to es-
timate whether the objects were present, and the final bounding 
box coordinates were generated. The architecture details are 
shown in Figure 2.

Model Training
The Faster R-CNN model was trained on 818 labeled bitewing 

radiographs. The bitewings were scaled to 800 px on the shorter 

Fig. 1. Samples of bitewing radiographs from the dataset. Surfaces with restorations or crowns were excluded (white arrows).
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side and then augmented by applying random transformations, 
such as flipping the image, center cropping, rotating, Gaussian 
blurring, sharpening, and adjusting the contrast and brightness.

The network was pretrained on ImageNet to determine the ini-
tial weights. During the training process, the model weights were 
updated to minimize a binary-focal loss function using an Adam 
optimizer. The Faster R-CNN model was trained over 200 epochs 
(24 h) with 8 batch sizes and a learning rate of 1e−3. The entire 
process was carried out on an NVIDIA Tesla P40 GPU using 
CUDA 10.2. The model architecture and optimization process 
were carried out on the DL framework PaddlePaddle with Python.

A total of 160 bitewing radiographs from the test dataset were 
used to estimate the optimal Faster R-CNN algorithm weight fac-
tors. The results of two dental postgraduate students with less than 
3 years of clinical experience were compared to the results of the 
neural network to assess the performance. The diagnosis standard 
and the calibration, consistency testing, and labeling procedures 
were the same as those of the experts.

Evaluation Metrics
The Fleiss kappa values were calculated in SPSS Statistics 19.0 

software to determine the intra- and inter-observer agreement. 
The evaluation metrics of both the Faster R-CNN model and the 

postgraduate students were on the proximal surface level. The 
evaluation metrics were compared with the reference standards of 
the experts. The receiver operating characteristic curve (ROC) of 
the model was drawn. The diagnostic accuracy, sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive value 
(NPV), and F1-score were calculated. The F1-score was the har-
monic mean of the PPV and the sensitivity. The diagnostic sensi-
tivity and PPV at different stages were also calculated. The para-
metric data were analyzed using a McNemar’s χ2 test to evaluate 
the differences between the network and the students, and a McNe-
mar Bowker test was used to evaluate the difference in sensitivity 
between them. A value of p < 0.05 was considered statistically sig-
nificant.

Results

The intra-observer and inter-observer Fleiss Kappa 
values were both greater than 0.75 (0.795–0.843) (Ta-
ble  1), suggesting excellent agreement. In the present 
study, the reference standard established by the experts 

Fig. 2. Overall architecture of the Faster R-CNN model.

Table 1. Fleiss Kappa values for inter- and intra-observer agreement 
among experts

Intra-observer 
Kappa value

Inter-observer 
Kappa value

Expert A 0.843
0.796Expert B 0.842

Expert C 0.827

Table 2. The distribution of carious and sound surfaces in the 
dataset

Caries 
surfaces

Sound 
surfaces

Total

Training and validation dataset 2,183 6,629 8,812
Test dataset 536 1,551 2,087
Total 2,719 8,180 10,899
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included 2,719 carious surfaces and 8,180 sound surfaces 
(Table 2).

The Faster R-CNN model was evaluated with the test 
dataset, which included 536 carious surfaces and 1,551 
sound surfaces. The accuracy, sensitivity, specificity, PPV 
and NPV, and F1-score are shown in Table 3. The neural 
network identified 388 of the 536 carious lesions, missing 

27.6% and thus yielding a sensitivity of 0.72. The network 
misdiagnosed 116 of the 1,551 (0.7%) sound surfaces as 
caries, yielding a specificity of 0.93. In total, 388 carious 
surfaces and 1,435 sound surfaces were correctly diag-
nosed, yielding an overall accuracy of 0.87. In addition, 
the NPV, which reflects that the probability of a test is 
negative in the absence of a disease, was 0.91, while the 

Table 3. Validity of the faster R-CNN model and the postgraduate students in diagnosing proximal caries on 
bitewings

TP FP FN TN Accuracy Sensitivity Specificity PPV NPV F1-score

Neural network 388 116 148 1,435 0.87 0.72 0.93 0.77 0.91 0.74
Postgraduate student 253 95 283 1,456 0.82 0.47 0.94 0.73 0.84 0.57

TP, true positive; FP, false positive; TN, true negative; FN, false negative; PPV, positive predictive value; NPV, 
negative predictive value.

a d

b e

c f

Fig. 3. Sample results by the network. The standard proximal car-
ies assessed by experts (red boxes) and those detected by the neural 
network (green boxes) are shown. Successful detections (both red 
and green boxes, a–f), false negative detections (red boxes only, 
d–f), and false positive detections (green boxes only, d–f) of the 
model.

a d

b e

c f

Fig. 4. Sample cases by the network and the postgraduate students. 
The standard proximal caries assessed by experts (red boxes), the 
neural network (green boxes), and the postgraduate students (blue 
boxes) are shown. Successful detections (red, green, and blue box-
es, a–f), false negative detections (red and green boxes only, d–f), 
and false positive detections (blue boxes only, d–f) of the students.
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PPV, which reflects the probability of a test is positive if 
a disease is present, was 0.77 (shown in Fig. 3).

Compared with the neural network, 283 of the 536 car-
ious lesions, more than half (52.8%), went undetected by 
the students, nearly twice as many as the network, which 
resulted in a proximal caries detection sensitivity of only 
0.47 for the students. However, only 95 of the 1,551 sound 
surfaces were misdiagnosed as caries, yielding a specific-
ity of 0.94. The accuracy, PPV, and NPV were 0.82, 0.73, 
and 0.84, respectively. However, the F1-score of the net-
work was 0.74, while the F1-score of the students was 0.57 
(shown in Fig. 4). Overall, the neural network performed 
significantly better than the students (χ2 = 69.43642, p < 
0.001).

The ROC curve of the network and the students are 
shown in Fig. 5. The students’ performance on the curve 
was to the lower right of the cutoff point.

The distribution, sensitivity, and PPV of the neural 
network and the postgraduate students in diagnosing dif-
ferent stages of proximal caries are shown in Table 4 and 
Table 5. A significant difference in the sensitivity between 
the model and the students (χ2 = 93.849, p < 0.001). The 
model was more sensitive than the postgraduate students 
at different stages of the extent of lesions, all above or at 
0.65. However, the students showed lower sensitivities, 
especially for lesions limited in enamel or outer third of 
dentin (0.40 and 0.32) (shown in Fig. 6).

Fig. 5. Receiver operating characteristic 
(ROC) curve. The black line described in-
dicates the performance of the neural net-
work when evaluated with respect to in 
terms of sensitivity and specificity. The 
blue dot shows the sensitivity and specific-
ity value of the network when it achieved at 
the optimal detection cutoff. The red dot 
represents the performance of the students’ 
performance.

Table 4. Distribution of the neural network and the postgraduate 
students in diagnosing different stages of proximal carious lesions

Lesions 
stage

Reference 
standard

Neural network Students

true false true false

E1 63 18 19 14 22
E2 188 145 53 87 44
D1 105 72 30 34 18
D2 100 80 13 58 9
D3 80 73 1 60 2
Total 536 388 116 253 95

E1, lesions involving the outer half of enamel; E2, lesions 
involving the inner half of enamel; D1, lesions involving the outer 
third of dentin; D2, lesions involving the middle third of dentin; D3, 
lesions involving the inner third of dentin.

Table 5. Sensitivity and PPV by the neural network and the 
postgraduate students on different stages of proximal carious 
lesions

Lesions stage Neural network Students

sensitivity PPV sensitivity PPV

E1/E2 0.65 0.69 0.40 0.60
D1 0.69 0.71 0.32 0.65
D2/D3 0.85 0.92 0.66 0.91

PPV, positive predictive value; E1/E2, lesions limited in enamel; 
D1, lesions involving the outer third of dentin; D2/D3, lesions 
involving the middle and inner third of dentin.
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Discussion

Bitewing radiography is a noninvasive radiographic 
procedure that has been widely used to detect and assess 
the extent of proximal carious lesions. In this study, the 
performance of CNNs for detecting proximal caries on 
bitewing radiographs was evaluated. As a type of DL al-
gorithm in the field of AI, CNNs have an impressive track 
record in medical imaging analysis and interpretation; 
however, they are still a novel method in the field of den-
tistry. There have been some studies on using different 
neural networks for lesions detection in recent years 
[Srivastava et al., 2017; Tripathi et al., 2019; Cantu et al., 
2020; Megalan Leo and Kalpalatha Reddy, 2021; Bayrak-
tar and Ayan, 2022], but considering the practical clinical 
applications in the future, we taken the advantages of fast 
inference speed and high accuracy of Faster R-CNN to 
apply it to carious lesions detection task.

Faster R-CNN was developed on the basis of the R-
CNN (region-based CNN) method, combining DL and 
traditional computer vision knowledge to achieve object 
detection. Faster R-CNN improved the network perfor-
mance by using a neural network for classification instead 
of a traditional method; this model integrated extraction, 
judgment, and regression in one operation, thus improv-
ing the speed. The efficiency of Faster R-CNN was im-
proved by relying on deep CNNs and running the algo-
rithm on a GPU.

In the test set, the neural network exhibited a sensitiv-
ity and specificity of 0.72 and 0.93, respectively, in detect-
ing proximal caries; 27.6% of lesions (388/536) were 

missed, while only 0.7% (116/1,551) of sound surfaces 
were misdiagnosed as caries lesions. This result was sim-
ilar to that of Cantu [Cantu et al., 2020], in which U-Net 
was used to segment lesions on the bitewing radiographs, 
and Bayraktar [Bayraktar and Ayan, 2022], in which 
YOLO was used for detection. Both studies found that the 
specificity was greater than the sensitivity: 75% versus 
83% in Cantu’s study and 72.26% versus 98.19% in 
Bayraktar’s study. However, a higher sensitivity and low-
er specificity (92.3% vs. 84.0%) for molars were reported 
by Lee [Lee et al., 2018b], who cropped periapical radio-
graphs with one tooth in each image and did not limit the 
type and positions of caries.

The Faster R-CNN model showed a higher sensitivity 
value than the less-experienced students (0.72 vs. 0.47). 
The students missed more than half of the lesions, nearly 
doubling the risk of underestimation of proximal caries. 
With similar PPVs, the neural network also has a higher 
sensitivity than the students in diagnosing lesions at dif-
ferent stages. Especially for the lesions limited in enamel 
or outer third of dentin, the students had sensitivities as 
low as 0.32, while the model could achieve 0.65 and above. 
This was similar to the results of Cantu [Cantu et al., 
2020], who found that the sensitivities of the network and 
dentists were 0.75 and 0.36, respectively. But for initial 
lesions, dentists had a very limited sensitivity of less than 
0.25, compared to the model’s sensitivity which is above 
0.7. Cantu’s interpretation of this result was that diagnos-
ing small carious lesions was more difficult than detecting 
advanced lesions, especially for inexperienced dentists; 
however, this was not the case for the neural network. We 

Fig. 6. The sensitivities of the neural net-
work and the postgraduate students in di-
agnosing different stages of proximal cari-
ous lesions.
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also found that mistakes taken by the model in degree 
judgment also tend to occur in early lesions and the mod-
el tends to underestimate the extent of lesions. These 
findings suggest that neural networks could be useful in 
initial diagnoses and for rechecking lesions that may have 
been missed by less-experienced practitioners, which al-
lows for early non- or micro-invasive treatment at an ear-
lier stage. A randomized trial found that not only may 
dentists’ sensitivity be improved with the help of AI in 
detecting early caries, but the risk of invasive treatment 
decisions was also improved [Mertens et al., 2021]. We 
remain neutral on this conclusion because radiography 
can only be used as an assistant method of diagnosis, and 
decision should not be made before a complete clinical 
examination. Thus, AI should work as assistance, a dou-
ble check by dentist is necessary to avoid overtreatment.

The present study found that the accuracies of the neu-
ral network, and the students were similar (0.87 vs. 0.82), 
whereas the F1-score was 0.74 for the network and 0.57 
for the students. The F1-score was used in the present 
study because the accuracy measures the correct cases 
without emphasizing false negatives and false positives, 
while the F1-score, defined as 2·(sensitivity·PPV)/(sensi-
tivity + PPV), is the harmonic mean of the PPV and sen-
sitivity, thus accounting for both false positives and false 
negatives. In medical cases where misdiagnoses are unac-
ceptable, a high accuracy may not necessarily indicate a 
good performance. For example, if a method identifies 
each surface as a caries lesion, while the accuracy may be 
1, but does not make any sense and may even cause irre-
versible damage to healthy teeth. However, a high F1-
score indicates that a method can correctly identify posi-
tive cases while avoiding overestimation and underesti-
mation.

The cutoff point on the ROC of the neural network was 
determined according to the maximum value of sensitiv-
ity × specificity to ensure that both the sensitivity and 
specificity were high, which was located near the upper 
left region of the curve. The neural network performed 
better than the students, whose cutoff point was in the 
lower right region of the curve.

Neural networks continuously improve by learning 
large amounts of data; thus, high-quality, consistent la-
bels were prioritized. Three experts with more than 5 
years of experience were involved in the present study. 
Together with strict diagnostic criteria, detailed calibra-
tion, double check, and consensus on the labeling process 
provided a high-quality, reliable “ground truth” estab-
lishment [Mohammad-Rahimi et al., 2022]. The distribu-
tion of the lesions, which is essential for estimating the 

diagnostic effectiveness, was similar in the training 
(24.8%) and testing set (25.7%) in this study. Therefore, 
under the same clinical conditions and equipment, the 
model is robust and did not run the risk of over-fitting. 
The model needs to be explored in randomized, practice-
based settings [Mohammad-Rahimi et al., 2022] since 
class imbalance is the actual situation in real clinical ra-
diographs. Furthermore, in the present study, the perfor-
mance of the neural network was compared with that of 
postgraduate students on a hold-out test dataset, which 
was the data that the model has never seen during the 
training process and will only be used once the training 
has been finished. Since experience is found to be the 
most important factor in diagnostics and DL is well-
known for its identification ability, it is necessary to com-
pare the network with less-experienced practitioners to 
evaluate its performance. The results of this study showed 
that neural networks could be useful to assist dentists or 
in dental education, especially for early caries which lim-
ited in enamel and outer third of dentin. In addition, 
functions for adjusting the brightness and contrast were 
added to the labeling software to mimic real clinical envi-
ronments, which was necessary considering that most di-
agnostic tasks are performed chairside. However, no test-
ing was performed on an external dataset, such as bite-
wings from other hospitals. The performance of the 
neural network on more complicated and larger datasets 
needs further exploration.

Conclusion

The present study evaluated the performance of the 
neural network in detecting proximal caries in bitewing 
radiographs; this network may be useful in standardizing 
practitioners’ imaging diagnoses and improving efficien-
cy. However, the data source used in either this study or 
most of the previous ones was relatively homogenous; the 
generalizability of the model needs to be well evidenced 
in future studies.
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