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Abstract: Segmentation of the masseter muscle (MM) on cone-beam computed tomography (CBCT)
is challenging due to the lack of sufficient soft-tissue contrast. Moreover, manual segmentation is
laborious and time-consuming. The purpose of this study was to propose a deep learning-based
automatic approach to accurately segment the MM from CBCT under the refinement of high-quality
paired computed tomography (CT). Fifty independent CBCT and 42 clinically hard-to-obtain paired
CBCT and CT were manually annotated by two observers. A 3D U-shape network was carefully
designed to segment the MM effectively. Manual annotations on CT were set as the ground truth.
Additionally, an extra five CT and five CBCT auto-segmentation results were revised by one oral and
maxillofacial anatomy expert to evaluate their clinical suitability. CBCT auto-segmentation results
were comparable to the CT counterparts and significantly improved the similarity with the ground
truth compared with manual annotations on CBCT. The automatic approach was more than 332 times
shorter than that of a human operation. Only 0.52% of the manual revision fraction was required. This
automatic model could simultaneously and accurately segment the MM structures on CBCT and CT,
which can improve clinical efficiency and efficacy, and provide critical information for personalized
treatment and long-term follow-up.

Keywords: deep learning; machine learning; CBCT; masseter muscle; orthodontic(s); canio-maxillofacial
surgery

1. Introduction

As one of the strongest pairs of masticatory muscles, the masseter muscle (MM), plays
an irreplaceable role in mastication and occlusal function [1]. Meanwhile, the MM supports
the mandibular angle area, which has a noticeable impact on craniofacial morphology and
external facial appearance [2–4].

Previous studies have revealed that the volume of the MM changes markedly within
the entire course of orthodontic-orthognathic treatment, which affects the postsurgical
stability, masticatory function, and patient’s external appearance [2,4–9]. Moreover, in-
vestigators have also observed the atrophy of MM and surrounding soft tissue during
orthodontic treatment in female adults, which may lead to an unaesthetic appearance as a
sign of aging [3,10]. Furthermore, the evaluation of MM function and morphology is also
useful in understanding the mechanism of facial asymmetry [11], as well as in improving
orthodontic treatment and in determining a correct retention period after treatment [12,13].
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Therefore, the availability of a patient-specific three-dimensional (3D) MM model from
imaging data that provides information about the orientation, size, and shape would be ex-
tremely useful for the planning of oral and maxillofacial surgery and orthodontic treatment
as well as for deriving biomarkers for treatment monitoring and treatment response.

The MM could be accurately segmented from computed tomography (CT) [2,4,5,7–9],
and magnetic resonance imaging (MRI) [14]. However, the hard tissue is barely visualized
in the MRI, and metal implants and restorations as well as orthodontic brackets produce
severe artifacts. Moreover, CT has the disadvantage of a high radiation dose, which is
prohibitive in the diagnosis and treatment of non-surgical patients. In contrast, cone-beam
computed tomography (CBCT) has the advantages of a low radiation dose, fast imaging
reconstruction speed, high spatial precision, and low cost [15]. Currently, CBCT has
replaced CT and MRI in most stomatological practices (such as orthodontics, periodontics,
alveolar surgery, and oral implantation), and its resolution of dentoskeletal structures can
be even higher than traditional CT.

However, CBCT has been only reported to analyze the 2D cross-sectional area of the
MM [16], as well as the orientation and length measured by landmarks [13], but few 3D
studies have been reported [3] because robust and accurate segmentation of the MM from
CBCT is difficult due to the lack of a sufficient soft-tissue contrast to differentiate the MM
structures from their background structures. Moreover, the voxel range of CBCT that
includes the complete MM region and can be used for 3D reconstruction is usually between
0.125 mm and 0.3 mm. Manual segmentation needs to handle hundreds of cross-sectional
images, which is very time-consuming and laborious [17]. Therefore, if there is a method
to accurately segment the MM on CBCT, this can provide critical information for clinical
stomatological practice as well as reduce the use of high radiation doses of CT. As depicted
in Figure 1, although the variance in the Hounsfield unit (HU) values of the MM region
in CBCT was greater than that in CT, there is a similar distribution of the HU values in
MM regions and non-MM regions between CBCT and CT. This suggests the feasibility of
applying the semantic segmentation model to segment the MM from CBCT.
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Figure 1. Hounsfield unit (HU) values distribution of the masseter muscle (MM) and non-
masseter muscle (non-MM) regions in cone-beam computed tomography (CBCT) and computed
tomography (CT).

In recent years, deep learning-based models, such as convolutional neural networks
(CNNs), have shown promising results in various medical imaging segmentation tasks, which
can reduce the workload as well as limit the variation in manual segmentation. In a review
of the literature, Iyer et al. introduced a 2.5D DeepLabV3+ structure for masticatory muscle
segmentation [18]. Chen et al. applied a 3D U-Net structure [19]. Qin et al. developed a
feature-enhanced 3D nested U-Net [20]. All the above reports are based on CT data. As for
the segmentation study in CBCT, previous studies have reported the achievement of various
deep learning-based methods on accurate segmentation of maxillofacial hard tissues (such as
maxilla and mandible, alveolar bone, teeth and mandibular canal, etc.) [21–23], but there are
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relatively few research results for soft tissue segmentation, meaning that the rich information
on soft tissues has not been fully excavated. To date, researchers have used adversarial
approaches to generate pseudo-MRI or pseudo-CT from CBCT to produce potentially
more accurate soft tissue segmentations than CBCT alone [17,24,25]. However, the basis
of these models is matching the output to the distribution of the target domain rather
than the anatomy structures, which can easily produce randomized outputs or hallucinate
anatomies, especially using unpaired imaging data [26], and can cause accumulated error
and increase segmentation error. Moreover, the computational power needed to train this
architecture increases dramatically, because four subnetworks need to be trained (a feature
extractor, generator, discriminator, and segmentation model) [17].

To the best of our knowledge, there are no reliable and accurate methods to segment
the MM on CBCT. Therefore, in this study, for the sake of exploring 3D information of
the MM on CBCT for clinical study and clinical practice, we proposed and validated a
deep-learning-based automatic segmentation model for CBCT under the refinement of
paired CT.

2. Materials and Methods
2.1. Ethical Considerations

The study was conducted in accordance with the Declaration of Helsinki (as revised
in 2013). The study was approved by the institutional review board of Peking University
School and Hospital of Stomatology (PKUSSIRB-201944062) and individual consent for this
retrospective analysis was waived.

2.2. Image Acquisition

Because patient collection was retrospective, two CBCT units were used: (1) NewTom
VG (Quantitative Radiology), with exposure parameters of 110 kVp and 2–3 mA and an
FOV of 15 cm × 15 cm; and (2) i-CAT FLX (Imaging Sciences International, Inc.), with
exposure parameters of 120 kVp and 5 mA and an FOV of 16 cm × 13 cm. The voxel size
was 0.3 × 0.3 × 0.3 mm3. The CT images were acquired by a 64-row spiral CT scanner
(Philips Inc., Andover, MA, USA) at 120 kVp, 230 mA, and 1.0 mm layer thickness. The CT
resolution was set to 512 × 512 × 236, and the voxel size was 0.4 × 0.4 × 1 mm3.

In total, 50 independent CBCT and 42 paired CT and CBCT (268 MM in total) were
collected in this retrospective study for model training, validating and blind testing. The
CT was considered as the reference.

2.3. CBCT to CT Superimposition

Paired CBCT and CT acquired from the same patients were collected. CBCT was
performed for the orthodontic 3D cephalometric analysis and for assessment of alveolar
bone thickness and the tooth movement boundary. Due to the incomplete scanning of the
cranial base in the CBCT, which is the main reference to determine the position of the maxilla
and mandible in orthognathic surgery, spiral CT images were performed presurgically for
3D digital orthognathic surgical planning. The average interval was 2.53 ± 2.23 months.
CBCT and CT images were superimposed in Dolphin3D imaging software (version 11.8;
Dolphin Imaging and Management Solutions, Chatsworth, CA, USA) (Figure 2) and were
exported with orientation.

2.4. Manual Annotation of the MM

Manual annotation and adjustment were performed in ITK-SNAP 3.8.0 (http://www.
itksnap.org (accessed on 19 December 2022)).

Two observers (YR. J., observer 1; JL. P., observer 2) with 10 and seven years of clinical
experience conducted the manual operation under the guidance of an expert in oral and
maxillofacial anatomy (L. J) with more 15 years of surgical experience. The 50 independent
CBCT were first automatically segmented [17] and underwent layer-by-layer manual

http://www.itksnap.org
http://www.itksnap.org
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adjustment. Fifteen pairs of CT and CBCT were randomly selected to form the blind test
set and were annotated by both observers (Figure 3).
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Figure 3. Examples of manual segmentation on CT and CBCT. (a,f) The original CT and CBCT images
of right and left MM. (b,e) The manual annotations and 3D results of right (purple) and left (orange)
MM by observer 1. (c,d) The manual annotations and 3D reconstruction results of right (blue) and
left (yellow) MM by observer 2.
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The manual annotation of the MM on the reference CT was set as the ground truth.

2.5. MM Auto-Segmentation

The flowchart of our automatic segmentation method is shown in Figure 4.
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Because the soft tissues in CBCT are hard to observe, we designed a progressive 3D
semantic segmentation network from coarse-grained to fine-grained segmentation from
low resolution to high resolution. To adequately capture features at every scale, the recently
proposed ReSidual U-block (RSU) [27] module, which is a tiny U-shaped network in a
nutshell, is applied to construct the proposed MM segmentation network.

As illustrated in Figure 5, the encoders and decoders were constructed by the RSU
module. The vision features resolution was down-sampled by 2× with every encoder and
up-sampled by 2× with every decoder. The encoders transformed the images into vision
features, which was convenient for the decoders to extract the segmentation results, and the
different scale features were decoded progressively to output the full-resolution prediction.
To embed the coarse-grained features (global features) into the low-resolution stages and
fine-grained features (local features) into the high-resolution, the training paradigm named
deep supervision was applied, which collected decoder outputs at every scale, down-sampled
the ground truth to fit the resolution of the output, and generated the supervised signal
(gradient) to adjust the network parameters.

Implement Details

We found that the HU values in the MM region were similar between CBCT and CT
images, which allowed us to develop an automatic model that could be used for the MM
auto-segmentation on both images. In detail, the HU values in the CBCT and CT images
were clipped ranges from −325 to 400. The lower bound and upper bound were acquired
by the 0.5 and 99.5 quantile of the foreground pixels, which has been a widely used strategy
proposed by nnU-Net [28].

The proposed network consisted of several RSU modules with four stages to balance
the cost of the computational resources and segmentation accuracy. The RSU modules
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were constructed by 3D operations (convolution, normalization, upsampling, etc.). The
activation functions in the network were LeakyReLU to extend the response range of the
feature maps [29].

The training procedure consisted of 20,000 iterations with two samples in every batch,
which aimed to minimize the dice loss [30] and cross-entropy loss between the ground
truth and model prediction. The weights of the loss functions were equivalent. During
training, the SGD optimizer with momentum was applied. The learning rate increased
from 0 to 0.001 in the initial 300 iterations (linear warm-up strategy), and decayed to 0 in
the remaining iterations following the cosine curve. Only the standard data augmentation
strategies were introduced including random 3D rotation, random resizing and cropping.
It should be noted that the random flip strategy was not used to avoid the obfuscation of
the left side and right side of the MM.
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2.6. Evaluation of Geometric Accuracy of the Segmentations

We applied the Dice similarity coefficient (DSC) and average Hausdorff distance (aHD)
to detect morphological and positional deviations. The DSC was defined as follows:

DSCSeg =
2
∣∣ASeg ∩MSeg

∣∣∣∣ASeg
∣∣+ ∣∣MSeg

∣∣ (1)

DSCBack =
2|ABack ∩MBack|
|ABack|+ |MBack|

(2)

DSCMean =
1
2
(
DSCSeg + DSCBack

)
(3)

where ASeg and MSeg are the auto-segmentation and manual annotation, respectively, and
ABack and MBack are the backgrounds outside each segmentation. |A∩M| is the overlap
area and |A|+ |M| is the total area.
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The aHD calculates the average distances of a point in A (a ∈ ASeg) to its closest point
in M (m ∈ MSeg), and

∣∣ASeg
∣∣ is the total number of A, given as:

aHD
(
ASeg, MSeg

)
=

1∣∣ASeg
∣∣ ∑

a∈ASeg

min
m∈MSeg

(‖a−m‖) (4)

2.7. Clinical Suitability

We further collected 10 additional CBCT and CT (CBCT, n = 5, CT, n = 5, 10 × 2 MMs)
out of the above datasets to investigate the clinical suitability of the model by computing
the DSCs, aHDs and revised fractions between the original auto-segmentations and the
oral and maxillofacial anatomy expert-revised auto-segmentations.

2.8. Statistical Analysis

A descriptive analysis of the study variables was done, calculating the mean, standard
deviation (SD) and 95% confidence intervals (95%CI) for all the continuous variables by
SPSS software (version 25.0; IBM, Armonk, NY, USA). The Bland–Altman method was
performed for the auto-segmentation performance between CBCT and CT. A paired t-test
was used to compare the difference between manual annotations and auto-segmentations
on CBCT. Statistical significance was defined as p < 0.05.

3. Results
3.1. Interobserver Variations

The interobserver variability between two observers is shown in Table 1. For CBCT
images, the DSCMean was 96.05 ± 2.46% (95%CI 94.69, 97.42) and the mean aHD was
4.31 ± 1.31 mm (95%CI 3.52, 5.09). For CT images, the DSCMean and the mean aHD were
95.82 ± 1.52% (95%CI 94.98, 96.66) and 3.22 ± 1.14 mm (95%CI 2.59, 3.86), respectively.
This indicates that the high agreement of manual annotations can be reached in both CBCT
and CT images.

Table 1. The interobserver variations and manual annotation difference between CBCT and CT by
Dice similarity coefficient (DSC, %) and average Hausdorff distance (aHD, mm) among 15 cases.

Mean ± SD (95%CI)

Measurements
Dice Similarity Coefficient (DSC, %) Average Hausdorff Distance (aHD, mm)

Mean Background Left MM Right MM Mean Left MM Right MM

Interobserver
variations

(CBCT)

96.05 ± 2.46
(94.69, 97.42)

99.97 ± 0.02
(99.96, 99.98)

94.39 ± 4.20
(92.07, 96.72)

93.78 ± 3.97
(91.59, 95.98)

4.31 ± 1.31
(3.52, 5.09)

4.36 ± 2.92
(2.74, 5.98)

4.26 ± 1.31
(3.53, 4.98)

Interobserver
variations (CT)

95.82 ± 1.52
(94.98, 96.66)

99.97 ± 0.02
(99.96, 99.98)

93.95 ± 2.48
(92.58, 95.32)

93.57 ± 2.22
(92.31, 95.76)

3.22 ± 1.14
(2.59, 3.86)

2.99 ± 1.03
(2.33, 3.47)

3.55 ± 1.61
(2.66, 4.44)

CBCT manual
annotations vs.

CT manual
annotations

90.16 ± 2.23
(89.33, 91.00)

99.93 ± 0.02
(99.92, 99,94)

84.75 ± 3.76
(83.22, 84.80)

85.82 ± 3.25
(84.61, 87.03)

5.41 ± 1.63
(4.80, 6.02)

5.28 ± 2.34
(4.41, 6.16)

5.54 ± 1.56
(4.95, 6.12)

SD, standard deviation; MM, masseter muscle; vs., versus.

3.2. Comparison of Manual Annotation Difference between CBCT and CT

The DSC between CBCT manual annotations and its CT manual counterparts were
84.75 ± 3.76% and 85.82 ± 3.25% for the left and right MM, respectively, and the mean
DSC considering background similarity (DCSMean) was 90.16 ± 2.23%. The mean aHD was
5.41 ± 1.63 mm (Table 1). The results demonstrated that the human eye recognition of the
MM anatomic structure in CBCT was limited, resulting in systematic differences between
CBCT and CT manual annotations.
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3.3. Model Performance

The model performance is summarized in Table 2. The DSC between CBCT auto-
segmentations and its CT manual counterparts were 91.56± 0.97% (95%CI 91.20, 91.92) and
90.94 ± 1.33% (95%CI 90.44, 91.44) for the left and right MM, respectively, and DCSMean
was 94.15 ± 0.68% (95%IC 93.90, 94.40). The mean aHDs were 3.68±1.01 mm (95%IC 3.30,
4.06). The backgrounds of the automatic results completely overlapped with the ground
truth (mean DSCBack = 99.96%).

Table 2. The evaluation of model performance by Dice similarity coefficient (DSC, %) and average
Hausdorff distance (aHD, mm) among 15 cases.

Mean ± SD (95%CI)

Measurements
Dice Similarity Coefficient (DSC, %) Average Hausdorff Distance (aHD, mm)

Mean Background Left MM Right MM Mean Left MM Right MM

CBCT auto-segmentations
vs. CT manual annotations

94.15 ± 0.68
(93.90, 94.40)

99.96 ± 0.01
(99.95, 99.96)

91.56 ± 0.97
(91.20, 91.92)

90.94 ± 1.33
(90.44, 91.44)

3.68 ± 1.01
(3.30, 4.06)

3.22 ± 1.01
(2.84, 3.59)

4.14 ± 1.68
(3.52, 4.77)

CT auto-segmentations vs.
CT manual annotations

94.45 ± 0.80
(94.15, 94.75)

99.96 ± 0.01
(99.96, 99.96)

91.84 ± 1.26
(91.37, 91.86)

91.55 ± 1.31
(91.06, 92.04)

3.67 ± 1.25
(3.21, 4.14)

3.35 ± 1.00
(2.97, 3.72)

4.00 ± 2.00
(3.25, 4.74)

CBCT auto-segmentations
vs. CT auto-segmentations

94.48 ± 0.74
(94.07, 94.90)

99.96 ± 0.01
(99.95, 99.97)

91.89 ± 1.23
(91.21, 92.57)

91.60 ± 1.22
(90.93, 92.27)

2.42 ± 0.33
(2.24, 2.60)

2.27 ± 0.38
(2.06, 2.49)

2.57 ± 0.55
(2.26, 2.87)

SD, standard deviation; MM, masseter muscle; vs., versus.

In addition, the DSCMean between CT auto-segmentations and manual annotations
was 94.45 ± 0.80% (95%IC 94.15, 94.75), and the mean aHDs was 3.67 ± 1.25 mm (95%IC
2.59, 3.86).

A good agreement between CBCT and CT auto-segmentation was demonstrated
in Figure 6. The Bland–Altman plots showed the mean ± SD (95%CI) of difference be-
tween CBCT and CT auto-segmentation DSCMean, DCSLeft MM, DSCRight MM, aHDMean,
aHDLeft MM, aHDRight MM against the ground truth as −0.299 ±0.472% (95%CI −1.224,
0.626), −0.284 ± 0.689% (95%CI −1.633, 1.066), −0.610 ± 1.064% (95%CI −2.696, 1.476),
0.009 ± 0.641 mm (95%CI 1.248, 1.266), −0.126 ± 0.883 mm (95%CI −1.605, 1.353) and
0.143 ± 0.992 (95%CI −1.801, 2.088). All differences in the DCSMean were within the 95%CI.
Only 3.33% (1/30) difference of DCSLeft MM and DCSRight MM were out of the 95%CI, and
6.67% (2/30) difference of all aHD-related measurements were out of the 95%CI. Moreover,
the DSCMean and the mean aHD between CBCT and CT auto-segmentation results were
94.48 ± 0.74% and 2.42 ± 0.33 mm, respectively (Table 2).

Table 3, paired t-test results have demonstrated a statistically significant improvement
in auto-segmentation results compared with manual annotations (p < 0.05).

Table 3. Paired t-test for evaluation difference between auto-segmentations and manual annotations
on CBCT.

Measurements
Mean ± SD

Mean Difference
(1–2) t

p
Value1:CBCT

Auto-Segmentation
2:CBCT

Manual Annotation

Dice similarity
coefficient
(DSC, %)

mean 94.15 ± 0.68 90.16 ± 2.23 3.99 10.402 0.000 **
background 99.96 ± 0.01 99.93 ± 0.02 0.03 10.387 0.000 **

Left MM 91.56 ± 0.97 84.75 ± 4.10 6.81 9.366 0.000 **
rightMM 90.94 ± 1.33 85.82 ± 3.25 5.12 9.302 0.000 **

Average Hausdorff
distance

(aHD, mm)

mean 3.68 ± 1.01 5.41 ± 1.63 −1.73 −5.274 0.000 **
leftMM 3.22 ± 1.01 5.28 ± 2.34 −2.06 −4.791 0.000 **

rightMM 4.14 ± 1.68 5.54 ± 1.56 −1.40 −3.480 0.002 **

SD, standard deviation. ** p < 0.01.



J. Clin. Med. 2023, 12, 55 9 of 14
J. Clin. Med. 2022, 11, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 6. The Bland–Altman plots for agreement analysis between auto-segmentation results on 

CBCT and CT by the Dice similarity coefficient (DSC) and average Hausdorff distance (aHD). 

3.4. Time Cost 

The average time cost of the manual annotations on one case were measured to be 

1879.80 ± 338.80 s for CBCT and 2245.80 ± 531.60 s for CT, respectively. As for the auto-

matic model, the average time cost was 5.64 ± 0.63 s for CBCT and 6.76 ± 0.76 s for CT, 

which is 332.22 to 333.30 times shorter than the human operation (Table 4). The accelera-

tion in the segmentation speed greatly improves clinical efficiency and frees doctors’ 

hands. 

Table 4. The average time (seconds, s) cost of segmentation on one case. 

Mean ± SD(95%CI) 

Manual Segmenting CBCT Manual Segmenting CT Model Segmenting CBCT Model Segmenting CT 

1879.80 ± 338.80 

(1753.49, 2006.51) 

2245.80 ± 531.72  

(2047.46, 2444.54) 

5.64 ± 0.63 

(5.29, 5.99) 

6.76 ± 0.76 

(6.34, 7.18) 

3.5. Clinical Suitability 

The clinical suitability results are summarized in Table 5. The manual revision was 

mainly focused on the superior extents (examples depicted in Figure 7a, 7b). A mean re-

vision fraction of 0.52 ± 0.44% was needed for both CBCT and CT auto-segmentations, and 

the revision fraction ranged from 0.25% to 0.72% for each side of the MM. The mean 

DSCMean was 99.84 ± 0.14%, and the mean aHD was 0.92 ± 0.88 mm. 
SD, standard deviation. 

Figure 6. The Bland–Altman plots for agreement analysis between auto-segmentation results on
CBCT and CT by the Dice similarity coefficient (DSC) and average Hausdorff distance (aHD).

3.4. Time Cost

The average time cost of the manual annotations on one case were measured to be
1879.80± 338.80 s for CBCT and 2245.80± 531.60 s for CT, respectively. As for the automatic
model, the average time cost was 5.64 ± 0.63 s for CBCT and 6.76 ± 0.76 s for CT, which is
332.22 to 333.30 times shorter than the human operation (Table 4). The acceleration in the
segmentation speed greatly improves clinical efficiency and frees doctors’ hands.

Table 4. The average time (seconds, s) cost of segmentation on one case.

Mean ± SD (95%CI)

Manual Segmenting CBCT Manual Segmenting CT Model Segmenting CBCT Model Segmenting CT

1879.80 ± 338.80
(1753.49, 2006.51)

2245.80 ± 531.72
(2047.46, 2444.54)

5.64 ± 0.63
(5.29, 5.99)

6.76 ± 0.76
(6.34, 7.18)

3.5. Clinical Suitability

The clinical suitability results are summarized in Table 5. The manual revision was
mainly focused on the superior extents (examples depicted in Figure 7a,b). A mean revision
fraction of 0.52 ± 0.44% was needed for both CBCT and CT auto-segmentations, and the
revision fraction ranged from 0.25% to 0.72% for each side of the MM. The mean DSCMean
was 99.84 ± 0.14%, and the mean aHD was 0.92 ± 0.88 mm. SD, standard deviation.

Table 5. The DSC (%) and aHD (mm) of five CBCT and five CT images and the fraction of manual
correction (%) between the original auto-segmentations and expert-revised counterparts.

Mean ± SD (95%CI)

Moda-
lity

Dice Similarity Coefficient (DSC, %) Average Hausdorff Distance (aHD, mm) Revision (%)

Mean Back-
ground

Left
MM

Right
MM Mean Left MM Right MM Mean Left MM Right MM

CBCT 99.84 ± 0.06
(99.76, 99.92)

100
(100,100)

99.77 ± 0.10
(99.64, 99.90)

99.77 ± 0.19
(99.53, 100)

0.95 ± 0.34
(0.53, 1.37)

0.90 ± 0.36
(0.46, 1.35)

1.00 ± 0.53
(0.34, 1.66)

0.56 ± 0.30
(0.20, 0.93)

0.68 ± 0.66
(−0.14,
1.51)

0.44 ± 0.41
(−0.07,
0.96)

CT 99.84 ± 0.20
(99.59, 100.09)

100
(100,100)

99.72 ± 0.28
(99.38, 100.07)

99.81 ± 0.39
(99.33, 100.29)

0.88 ± 1.27
(−0.70,
2.46)

1.02 ± 0.93
(−0.13,
2.17)

0.75 ± 1.68
(−1.33,
2.83)

0.49 ± 0.59
(−0.24,
1.21)

0.72 ± 1.07
(−0.60,
2.05)

0.25 ± 0.50
(−0.37,
0.86)

Mean
±
SD

99.84 ± 0.14
(99.72, 9.94)

100
(100,100)

99.75 ± 0.20
(99.60, 99.89)

99.79 ± 0.27
(99.58, 99.99)

0.92 ± 0.88
(0.29, 1.55)

0.96 ± 0.66
(0.48, 1.44)

0.87 ± 1.18
(0.03, 1.72)

0.52 ± 0.44
(0.21, 0.84)

0.70 ± 0.84
(0.10, 1.30)

0.35 ± 0.44
(0.03, 0.66)

SD, standard deviation; MM, masseter muscle.
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4. Discussion

Masticatory muscles, especially the MM, play an irreplaceable role in the function and
morphology of the human stomatognathic system. Numerous studies have shown that
the MM is closely correlated with stability after orthognathic surgery, esthetics of frontal
facial profile, the development of malocclusion and facial deviation, and occlusal stability
after orthodontic treatment [2–13]. Therefore, to assist the surgical planning, as well as
orthodontic diagnosis, treatment, and retention, it is important to obtain patient-specific
3D MM models by segmenting them from imaging data that provide comprehensive
information about the orientation, size, and shape of the MM.

CBCT is a widely available diagnostic method in stomatological practice with sub-
stantial advantages over CT and MRI examinations in terms of low radiation, fast imaging
and cost efficiency. At present, the application of CBCT is mainly focused on the analysis
of dentoskeletal hard structures. However, the abundant 3D information on soft tissues,
especially masticatory muscles, has not been fully explored because the blurry resolution
and fuzzy boundaries of soft tissue images in CBCT make the manual segmentation of
masticatory muscles time-consuming and error-prone [17,23,24]. In this study, we demon-
strated that high interobserver consistency can be reached in both the CBCT and CT manual
annotation task. This may be attributed to the high proficiency of the MM anatomy of
two observers as stomatologists under the guidance of an expert in oral and maxillofacial
anatomy, as well as the selection of high-quality imaging data [19].

However, our study has shown an obvious discrepancy between manual annotations
on pairwise CBCT and CT (the mean DSC = 90.16 ± 2.23%, and DCS of segmentation
less than 90%, Table 1). In other words, the visual recognition of the MM structure on
CBCT by the human naked eye was limited. Furthermore, since the operator could only
segment recognizable portions of the masseter muscle, the low quality of the CBCT soft
tissue imaging brings mainly systematic errors to manual annotations, while the random
errors are relatively fewer.

There have been numerous efforts to improve the soft tissue imaging quality and
segmentation accuracy of CBCT, ranging from hardware improvement to software im-
provement. However, they are limited by the high computational complexity to perform
the correction [31]. Recently, deep learning-based models have achieved unprecedented
advances in various biomedical image segmentation tasks [17–22]. Among these, the U-Net
architecture has demonstrated a dominant performance by combining both low-resolution
information (for objective recognition) and high-resolution information (for accurate seg-
mentation positioning) [32]. Extending 2D to 3D structures is preferable because it can
effectively exploit the 3D spatial and structural information directly from the volumet-
ric images [33]. On the other hand, due to the fuzzy boundary and complex gradient
of biomedical images, deep architecture and high-resolution information are essential
for more accurate segmentation [27]. The recent state-of-the-art U2-Net is proposed as a
two-level U-shaped structure with a deeper architecture while maintaining high resolu-
tion feature maps at affordable memory and computational costs [27]. In this study, we
validated the accuracy of a 3D version of the U2-Net. With high-quality CT images as a
reference, the segmentation performance on CBCT by this deep-learning algorithm is not
only comparable to CT auto-segmentations (Figure 7), but also is significantly better than
the manual annotations on CBCT (the DSCMean exceeded 94%, and the DSCseg exceeded
90%, p < 0.05, Tables 2 and 3). Therefore, by learning the ground truth of paired CT manual
segmentations, deep learning methods can not only expand the boundaries of human eye
recognition, but also build a more accurate MM model.

With regard to the model performance on CT, although limited cases of CT data were
trained, the mean DSCMean exceeded 94% in this study. Since the HU values in the MM
region were similar between CBCT and CT images (Figure 1), we can use the two kinds of
training data to construct an automatic model capable of performing the segmentation task
on both images. Furthermore, our results have surpassed those of previous reports [18,19],
which may be attributed to the self-developed progressive 3D semantic segmentation
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network that could capture adequate features at every scale. On the other hand, a higher
level of interobserver agreement was achieved in this study compared with the results
by Chen et al. [19], which could ensure the quality of data for training the model. As
noted by Feng et al., a model does not learn from its mistakes in the way that humans
do, and providing poor training data will be disadvantageous for the training results [34].
However, our results were slightly inferior to those of Qin et al. [20], which may be due to
the overfitting of the model caused by data augmentation and the cross-validation method
in the latter study.

Moreover, in order to evaluate whether the auto-segmentation results misidentified
other structures, we also calculated the similarity of the background. The results showed
that the background of the auto-segmentations was highly consistent with its manual
counterparts. In other words, our model somewhat under-segmented the MM, which may
be caused by the fuzzy boundary of the MM and the statistical clipping of the MM HU
range based on the nnU-Net strategy (the foreground pixels out of the 0.5–99.5 quantile
range would be clipped) [27].

With regard to the clinical suitability of the model, minor manual modifications for
both the CBCT and CT auto-segmentation results were needed in this study (the mean
manual revision fraction was 0.52 ± 0.44%, Table 2). A previous study reported a mean
22.86% of case revisions [18], suggesting an obvious improvement in terms of accuracy of
our proposed method. Refinement was focused on the superior extents (Figure 7a,b). The
explanation was that visualization of the MM superior ligament is poor [1], and the model
threshold settings affect the identification results.

Prior to clinical implementation, it is also important to determine whether these
auto-segmentation results fall within the interobserver variability. In this study, statistical
analyses showed that the auto-segmentations were less variable than the manual annota-
tions (the standard deviations for both DSC and aHD of the auto-segmentation results were
smaller than the corresponding interobserver variations), indicating that this automatic
method can feasibly reduce interobserver variability. A consistent result was also reported
in previous studies [18,19].

Although high MM segmentation accuracy from both CT and CBCT was achieved,
some limitations of our study still exist. Firstly, a larger dataset and more diverse CT
and CBCT with variable exposure conditions will be expected to improve the generality
of our model. Therefore, we will continue to collect the pairwise dataset in the future.
Secondly, the performance of the proposed algorithm has not been compared with the other
publications due to the lack of widely accepted benchmarks. Our next work will propose
such benchmarks.

5. Conclusions

Our proposed automatic model achieved a breakthrough in the segmentation of the
MM on CBCT. Its performance was comparable to that of clinical experts segmenting CT
images and was significantly superior to that of clinical experts segmenting CBCT images.
The annotation labor cost was reduced by more than 332 times, and only minor manual
modifications were required. With the help of proper software, this method would extend
the CBCT application and improve clinical efficacy and efficiency as well as reduce the
radiation exposure of personalized treatment and long-term follow-up.
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