
RESEARCH ARTICLE

IGFBP2 enhances adipogenic differentiation

potentials of mesenchymal stem cells from

Wharton’s jelly of the umbilical cord via JNK

and Akt signaling pathways

Yuejun Wang1, Yunsong Liu1, Zhipeng Fan2, Dayong Liu2, Fu Wang3*,

Yongsheng Zhou1,4*

1 Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China,

2 Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration

and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China,

3 Department of Oral Basic Science, School of Stomatology, Dalian Medical University, Liaoning, China,

4 National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China

* kqzhouysh@hsc.pku.edu.cn (ZY); dywangfu@gmail.com (WF)

Abstract

Mesenchymal stem cell (MSC)-mediated tissue engineering represents a promising strat-

egy to address adipose tissue defects. MSCs derived from Wharton’s jelly of the umbilical

cord (WJCMSCs) may serve as an ideal source for adipose tissue engineering due to their

abundance, safety profile, and accessibility. How to activate the directed differentiation

potentials of WJCMSCs is the core point for their clinical applications. A thorough investiga-

tion of mechanisms involved in WJCMSC adipogenic differentiation is necessary to support

their application in adipose tissue engineering and address shortcomings. Previous study

showed, compared with periodontal ligament stem cells (PDLSCs), WJCMSCs had a weak-

ened adipogenic differentiation potentials and lower expression of insulin-like growth factor

binding protein 2 (IGFBP2). IGFBP2 may be involved in the adipogenesis of MSCs. Gener-

ally, IGFBP2 is involved in regulating biological activity of insulin-like growth factors, how-

ever, its functions in human MSCs are unclear. Here, we found IGFBP2 expression was

upregulated upon adipogenic induction, and that IGFBP2 enhanced adipogenic differentia-

tion of WJCMSCs and BMSCs. Moreover, IGFBP2 increased phosphorylation of c-Jun N-

terminal kinase (p-JNK) and p-Akt, and activated JNK or Akt signaling significantly promoted

adipogenic differentiation of MSCs. Furthermore, inhibitor-mediated blockage of either JNK

or Akt signaling dramatically reduced IGFBP2-mediated adipogenic differentiation. And the

JNK inhibitor, SP600125 markedly blocked IGFBP2-mediated Akt activation. Moreover,

IGFBP2 was negatively regulated by BCOR, which inhibited adipogenic differentiation of

WJCMSCs. Overall, our results reveal a new function of IGFBP2, providing a novel insight

into the mechanism of adipogenic differentiation and identifying a potential target mediator

for improving adipose tissue engineering based on WJCMSCs.
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Introduction

Adipose tissue plays an essential role in the maintenance of organ contours, energy storage,

metabolic balance, and immune regulation through exocrine hormones and fat cell factors.

Adipose tissue defects due to tumor resection, trauma, or hereditary and congenital diseases

usually lead to loss of fat tissue, poor appearance and local disordered regulatory function. A

major clinical challenge is that traditional treatments such as prosthetic appliance, plastic and

reconstructive surgery and fat grafting do not effectively restore adipose tissue. Adipose tissue

engineering and cell-based therapies represent novel and promising approaches for regenerat-

ing adipose tissue.

MSCs have been isolated from various tissues, including bone marrow, adipose tissue, vas-

cular tissue, dental tissue, craniofacial tissue, and umbilical cord [1–7]. With their convenient

isolation, low immunogenicity, and ability to transdifferentiate, MSCs are considered a prom-

ising therapeutic approach for tissue regeneration [1,4,5,8,9]. WJCMSCs, which are isolated

from neonatal umbilical cord tissue, are a plentiful, cost-effective, and biologically safe source

of stem cells and show the significant potential for regenerative medicine [9–12]. As studied

dental-derived stem cell population, PDLSCs which own the higher stemness features and

preferable multi-differentiation properties, are the ideal seeding cells for tissue regeneration

[8,13,14]. However, some researches suggested that compared with PDLSCs, unmodified

WJCMSCs with their weaker stemness features might not be ideal seed cells for tissue regener-

ation [8,15]. A crucial issue for WJCMSCs-mediated adipose tissue regeneration is how to acti-

vate adipogenic differentiation and enhance regenerative ability.

As the essential member of insulin-like growth factor (IGF) axis, insulin-like growth factor

binding proteins (IGFBPs) are homologs with high structural similarity but distinct function-

alities. They all have similar N-terminal and C-terminal domains connected by a variable

linker region [16]. IGFBPs assume a key regulatory role in many cellular processes, including

proliferation, migration, differentiation, and survival. IGFBPs also play an essential role in the

processes of growth, development, and tissue metabolism [17]. In the IGF axis, IGFs play influ-

ential roles in the function of IGFBPs [18,19]. Several studies indicated that IGF1 was an essen-

tial regulator of adipogenic differentiation. IGF1 was shown to upregulate phosphorylation of

cAMP response element-binding protein (CREB) through the PI3K/Akt pathway, and then

activated CREB increased the expression of PPARγ2, which was a crucial factor in adipogenesis

through regulating specific gene expression [20–22]. IGFBP2 was the predominant binding

protein secreted by differentiating white preadipocytes. In chickens, the IGFBP2 gene could be

a candidate locus or linked to a major gene associated with abdominal fat weight and percent-

age of abdominal fat [23,24]. Our previous research showed that, compared with dental

derived stem cells, WJCMSCs exhibited decreased adipogenic differentiation potential as well

as downregulated expression of IGFBP2 [15]. These findings suggested the possible involve-

ment of IGFBP2 in the regulation of adipogenic differentiation in MSCs.

Many events facilitate the commitment of MSC adipogenic differentiation, including the

coordination of a complex network of transcription factors, co-factors, and pathway signaling

intermediates. The extracellular regulated protein kinases (ERK), p38, and JNK MAPK family

are a group of serine/threonine kinases that transduce extracellular signals to intracellular tar-

gets, involving a series of protein kinase cascades and long-term response that play a crucial

role in regulating cell differentiation [25–27]. Many researches focused on the effect of the

MAPK family on adipogenic differentiation. Sale et al. found that ERK1 and ERK2 were

required for differentiation of 3T3-L1 fibroblasts to adipocytes [28]. And inhibited ERK path-

way by specific inhibitor could restrain adipocyte differentiation ability [29]. In addition, ERK

activity was essential for the expressions of the PPARγ and C/EBP [30,31]. Moreover, cells
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isolated from Erk-/- mouse showed impaired adipogenesis capability [32]. It was previously

reported that the JNK pathway also regulated adipogenesis differentiation of MSCs [33]. JNK

could phosphorylate PPARγ2 by oxidized low-density lipoprotein [34]. Yet, using SP600125, a

specific JNK inhibitor, could increase the expressions of CEBPα/β and PPARγ2, and stimulate

adipogenesis of hASCs in a dose-dependent manner [35]. Moreover, the drug for preventing

osteoporosis, alendronate, inhibited adipogenic differentiation by ERK and JNK pathway in

BMSCs [36]. As for the role of p38 in adipogenic differentiation, some studies showed that

using p38 inhibitors could block adipocyte differentiation [37,38]. In addition, the Akt signal-

ing pathway was also essential for inducing PPARγ. Akt activity sustained the adipogenic dif-

ferentiation of ASCs. Akt knockout mice showed impaired adipogenesis [39–41]. Importantly,

IGFBP2 could activate multiple MAPK pathways. IGFBP2/Integrin5 interaction promoted gli-

oma cells migration through JNK activation [42]. Exogenous IGFBP2 induced proliferation

and activated the ERK pathway in NIH-OVCAR3 cells, and also promoted proliferation in

rat growth plate chondrocytes via MAPK/ERK pathway [43]. In addition, the expression of

IGFBP2 was positively regulated by PI3K/Akt pathway, and the Akt signal transduction was

impaired in Igfbp2 -/- mouse cells [44]. However, it is still unknown the effect of IGFBP2 on

MAPK and Akt pathways during adipogenic differentiation of WJCMSCs. Based on the avail-

able information, we hypothesize that IGFBP2 affects the function of MSCs, but its function

and mechanism remain unclear. Here, we investigate the effects and underlying mechanisms

of IGFBP2 in the adipogenic differentiation of MSCs. Our results show overexpression IGFBP2
enhances adipogenic differentiation of WJCMSCs by activating JNK and Akt signaling path-

way. Furthermore, we find that IGFBP2 is negatively regulated by BCOR, which represses the

adipogenic differentiation potential of WJCMSCs.

Materials and methods

Ethics statement and cell cultures

Between January and November 2012, patients were recruited from the Department of Oral

and Maxillofacial Surgery of Beijing Stomatological Hospital, Capital Medical University. And

human impacted third molars were collected from six healthy male patients (16–20 years old)

under approved guidelines set by the Beijing Stomatological Hospital, Capital Medical Univer-

sity (Ethical Committee Agreement, Beijing Stomatological Hospital Ethics Review No. 2011–

02), with written informed consent. In addition, we also obtained the informed consent from

parent/guardian on behalf of minors (<18 years old). The authors had access to information

that could identify individual participants during or after data collection.

Teeth were first disinfected with 75% ethanol and then washed with phosphate-buffered

saline. PDLSCs were isolated, cultured, and identified as previously described [15,22]. Briefly,

PDLSCs were separated from periodontal ligament in the middle one-third of the root. Subse-

quently, MSCs were digested in a solution of 3 mg/mL collagenase type I (Worthington

Biochemical Corp., Lakewood, NJ, USA) and 4 mg/mL dispase (Roche Diagnostics Corp.,

Indianapolis, IN, USA) for 1 h at 37˚C. Single-cell suspensions were obtained by cell passage

through a 70-μm strainer (Falcon, BD Labware, Franklin Lakes, NJ, USA). Human BMSCs,

ASCs, and WJCMSCs were purchased from ScienCell Research Laboratories (Carlsbad, CA,

USA). MSCs were grown in a humidified, 5% CO2 incubator at 37˚C in DMEM alpha modi-

fied Eagle’s medium (Invitrogen, Carlsbad, CA, USA), supplemented with 15% fetal bovine

serum (FBS; Invitrogen, Carlsbad, CA, USA), 2 mmol/L glutamine, 100 U/mL penicillin and

100 μg/mL streptomycin (Invitrogen, Carlsbad, CA, USA). The culture medium was changed

every 3 days. MSCs at passages 3–5 were used in subsequent experiments. Human embryonic

kidney 293T cells were maintained in complete DMEM with 10% FBS, 100 U/mL penicillin,
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and 100 μg/mL streptomycin. For viral packaging, HEK293T cells at 80% confluency were co-

transfected with plasmids and transfection reagent. For SP600125 (Cell Signaling Technology,

Beverly, MA, USA), LY294002 (Cell Signaling Technology, Beverly, MA, USA), anisomycin

(Cell Signaling Technology, Beverly, MA, USA), or insulin (Sigma-Aldrich, St. Louis, MO,

USA) treatment, MSCs were starved for 24 h to synchronize the cells in DMEM alpha modi-

fied Eagle’s medium without serum, then changed to routine culture medium and treated with

appropriate agents. The studies on human MSCs were conducted between May 2012 and

November 2016. All cell-based experiments were repeated three times. http://dx.doi.org/10.

17504/protocols.io.iegcbbw.

Plasmid construction and viral infection

The plasmids were constructed using standard methods; all sequences were verified by appropri-

ate restriction digestion and/or sequencing. Human full-length IGFBP2 cDNA from ASCs fused

to a M2-Flag tag was produced with a standard PCR protocol. This sequence (Flag-IGFBP2) was

subcloned into the pQCXIN retroviral vector with AgeI and BglII restriction sites. Similarly, the

human full-length BCOR cDNA was fused to a Flag tag (Flag-BCOR) and subcloned into the

pQCXIN retroviral vector with AgeI and BamH1 restriction sites. For viral infections, MSCs

were plated overnight, and then infected with retroviruses in the presence of polybrene (6 μg/

mL, Sigma-Aldrich, St. Louis, MO, USA) for 12 h. After 48 h, infected cells were selected with

600 μg/mL G418 for 10 days. http://dx.doi.org/10.17504/protocols.io.iehcbb6.

Western Blot analysis

Cells were lysed in RIPA buffer (10 mM Tris-HCl, 1 mM EDTA, 1% sodium dodecyl sulfate

[SDS], 1% NP-40, 1:100 proteinase inhibitor cocktail, 50 mM β-glycerophosphate, 50 mM

sodium fluoride). The samples were separated on a 10% SDS polyacrylamide gel and trans-

ferred to PVDF membranes with a semi-dry transfer apparatus (Bio-Rad, Hercules, CA, USA).

The membranes were blotted with 5% dehydrated milk for 1 h and then incubated with pri-

mary antibodies overnight. The immune complexes were incubated with horseradish peroxi-

dase-conjugated anti-rabbit or anti-mouse IgG (Promega, Madison, WI, USA) and visualized

with SuperSignal reagents (Pierce, Rockford, IL, USA). Primary antibodies were purchased

from following commercial sources: monoclonal anti-FLAG M2 (Clone No.9A3, Cat No.8146,

Cell Signaling Technology, Beverly, MA, USA); monoclonal antibody against SAPK/JNK (Cat

No. 9253, Cell Signaling Technology, Beverly, MA, USA); monoclonal antibody against phos-

pho-SAPK/JNK (Cat No. 4668, Cell Signaling Technology, Beverly, MA, USA); monoclonal

antibody against Akt (Cat No. 4685, Cell Signaling Technology, Beverly, MA, USA); polyclonal

antibody against phospho-Akt (Cat No. 9271, Cell Signaling Technology, Beverly, MA, USA);

monoclonal antibody against ERK1/2 and MAPK (Cat No. 4695, Cell Signaling Technology,

Beverly, MA, USA); monoclonal antibody against phospho-p44/42 MAPK (Cat No. 4377, Cell

Signaling Technology, Beverly, MA, USA); monoclonal antibody against p38 MAPK (Cat No.

8690, Cell Signaling Technology, Beverly, MA, USA); monoclonal antibody against phospho-

p38 MAPK (Cat No. 4631, Cell Signaling Technology, Beverly, MA, USA). We also used a pri-

mary monoclonal antibody to detect the housekeeping protein, glyceraldehyde 3-phosphate

dehydrogenase (GAPDH; Clone No. GAPDH 71.1, Cat No. G8795, Sigma-Aldrich, St. Louis,

MO, USA). http://dx.doi.org/10.17504/protocols.io.iejcbcn.

Oil Red O staining

Adipogenic differentiation was induced by using the StemPro adipogenesis differentiation kit

(Invitrogen, Carlsbad, CA, USA). MSCs were grown in the adipose-inducing medium for 3

IGFBP2 and WJCMSC adipogenic differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0184182 August 31, 2017 4 / 18

http://dx.doi.org/10.17504/protocols.io.iegcbbw
http://dx.doi.org/10.17504/protocols.io.iegcbbw
http://dx.doi.org/10.17504/protocols.io.iehcbb6
http://dx.doi.org/10.17504/protocols.io.iejcbcn
https://doi.org/10.1371/journal.pone.0184182


weeks. For Oil Red O staining, after induction, cells were fixed with 10% formalin for at least 1

h at room temperature. Next, cells were stained with the 60% Oil Red O in isopropanol as

working solution for 10 min. The proportion of Oil Red O-positive cells was determined by

counting stained cells under a light microscope. The final OD value in each group was normal-

ized with the total protein concentrations prepared from a duplicate plate. http://dx.doi.org/

10.17504/protocols.io.iemcbc6.

Real-time RT-PCR

Total RNA was isolated from MSCs with TRIzol Reagent (Invitrogen, Carlsbad, CA, USA).

Reverse transcription reactions contained 2 μg RNA, random hexamers or oligo (dT), and

reverse transcriptase, and were performed according to the manufacturer’s protocol (Invitro-

gen, Carlsbad, CA, USA). Real-time PCR reactions were performed using the QuantiTect

SYBR Green PCR kit (Qiagen, Hilden, Germany) and an Icycler iQ Multi-color Real-time

PCR Detection System with the expression of GAPDH as the internal control. The primers

used were: IGFBP2, forward, 50-cgttcaagtgcaagatgtctctgaacg-30 and reverse, 50-
ggatcagcttcccggtgttg-30; PPARγ, forward, 50-cgagaccaacagcttctccttc
tcg-30 and reverse, 50-tttcagaaatgccttgcagtgg-30; LPL, forward, 50-cggatta
acattggagaagctatccg-30 and reverse, 50-agctggtccacatctccaagtc-30; CD36,

forward, 50-cgattaacataagtaaagttgccataatcg-30 and reverse, 50-cgcagtgactt
tcccaataggac-30; CEBPA, forward, 50-cggcttatcctaaatactagagttgccg-30 and

reverse, 50-ggacttggtgcgtctaagatga-30; GAPDH, forward, 5’-cggaccaatacga
ccaaatccg-3’ and reverse, 5’-agccacatcgctcagacacc-3’. The cycle threshold

values (Ct values) were used to calculate the fold differences by the ΔΔCtmethod. http://dx.

doi.org/10.17504/protocols.io.iencbde.

Statistics

All statistical calculations were performed with SPSS20.0 statistical software (IBM, Armonk,

NY). Comparisons between two groups were analysed by independent two-tailed Student’s t-
tests, and comparisons between more than two groups were analysed by one-way ANOVA fol-

lowed by a Duncan’s post hoc test. Data were expressed as the mean ± standard deviation (SD)

of 3 experiments per group. P values< 0.05 were considered statistically significant.

Results

IGFBP2 promotes adipogenic differentiation of MSCs

First, we used real-time RT-PCR to compare the IGFBP2 mRNA levels in PDLSCs, BMSCs,

ASCs, and WJCMSCs. We consistently found lower IGFBP2 expression in WJCMSCs

(0.00388±0.00033) than that in PDLSCs (1±0.0347), BMSCs (0.1225±0.011), and ASCs (0.364

±0.023) (Fig 1A). Next, we investigated the IGFBP2 expression upon adipogenic differentia-

tion. Compared with proliferation medium, adipogenic-inducing medium induced upregu-

lated IGFBP2 expression in PDLSCs (Fig 1B), BMSCs (Fig 1C), ASCs (Fig 1D), and WJCMSCs

(Fig 1E) at 1 and 2 weeks after induction.

To elucidate the function of IGFBP2 in WJCMSCs, retrovirus expressing Flag-tagged wild

type IGFBP2 (Flag-IGFBP2) was used to perform a gain-of-function study in WJCMSCs.

Ectopic IGFBP2 overexpression was verified by real-time RT-PCR (Fig 2A) and Western Blot

(Fig 2B). To examine the adipogenic differentiation potential, transduced WJCMSCs were cul-

tured in adipose-inducing medium. Following 3 weeks induction, Oil Red O staining showed

significantly more lipid deposits in WJCMSC-Flag-IGFBP2 cells than in WJCMSC-Vector

IGFBP2 and WJCMSC adipogenic differentiation
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cells (Fig 2C). After normalizing the data with total protein, these results suggested that

WJCMSC-Flag-IGFBP2 cells had stronger adipogenic differentiation potential (Fig 2D). We

also examined the adipogenic differentiation markers: peroxisome proliferator-activated

receptor γ (PPARγ), lipoprotein lipase (LPL), CCAAT/enhancer-binding protein α (CEBPA),

and cluster of differentiation 36 (CD36). The real-time PCR results indicated IGFBP2-overex-

pressing WJCMSCs (38.9±3.5) showed significantly higher PPARγ mRNA levels compared

with cells infected with the empty vector (23.5±2.8) at 2 weeks following induction (Fig 2E).

And the LPL (Fig 2F) and CD36 (Fig 2G) mRNA levels were higher in WJCMSC-Flag-IGFBP2
cells at 0, 1, and 2 weeks after induction compared with WJCMSC-Vector cells. At 2 and 3

weeks after induction, Flag-IGFBP2-overexpressing WJCMSCs also showed strong induction

of the CEBPA (Fig 2H).

To determine whether IGFBP2 had similar functions in other MSCs, we overexpressed

IGFBP2 in BMSCs via retrovirus expressing Flag-tagged wild type IGFBP2 (S1 Fig). Assess-

ment of Oil Red O staining and real-time RT-PCR revealed that IGFBP2 significantly pro-

moted adipogenic differentiation in BMSCs (S1 Fig). Together, these results showed that

Fig 1. IGFBP2 expression levels in MSCs. (A) Real-time RT-PCR revealed that lower IGFBP2 expression in WJCMSCs than that in PDLSCs,

BMSCs, and ASCs. (B-E) Increased IGFBP2 expression after adipogenic induction in PDLSCs (B), BMSCs (C), ASCs (D), and WJCMSCs (E).

GAPDH was used as an internal control. **p < 0.01. w: week; PM: proliferation medium; AM: adipose-inducing medium.

https://doi.org/10.1371/journal.pone.0184182.g001

IGFBP2 and WJCMSC adipogenic differentiation
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Fig 2. IGFBP2 overexpression enhances adipogenic differentiation in WJCMSCs. (A) Flag-IGFBP2-infected WJCMSCs showed IGFBP2

overexpression by real-time RT-PCR. GAPDH was used as an internal control. (B) Overexpression of IGFBP2 was verified by Western Blot analysis.

(C-D) Oil Red O staining and quantitative analysis showed that IGFBP2 overexpression prompted formation of lipid deposits. Scale bar: 100 μm. (E-H)

Real-time RT-PCR showed that overexpression of IGFBP2 upregulated expressions of PPARγ (E), LPL (F), CD36 (G), and CEBPA (H) in WJCMSCs

at 0, 1, and 2 weeks after induction. GAPDH was used as an internal control. *p < 0.05. **p < 0.01. α: anti; w: week.

https://doi.org/10.1371/journal.pone.0184182.g002

IGFBP2 and WJCMSC adipogenic differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0184182 August 31, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0184182.g002
https://doi.org/10.1371/journal.pone.0184182


IGFBP2 overexpression substantially enhanced the adipogenic differentiation property of

MSCs in vitro.

IGFBP2 increases JNK and Akt phosphorylation in WJCMSCs

To investigate how IGFBP2 enhanced the adipogenic differentiation of WJCMSCs, we used

Western Blot and quantitative analysis to examine the levels of proteins involved in MAPK

signaling, including p38, ERK and JNK, and the Akt pathway. The results showed that over-

expression of IGFBP2 enhanced phosphorylation of JNK and phosphorylation of Akt in

WJCMSCs, while phosphorylation of ERK, and total protein levels of p38, JNK, ERK, and

Akt proteins were not affected (Fig 3A and 3B). And phosphorylated p38 MAPK was not

found.

To test whether activated JNK or Akt had the capability of pro-adipogenesis in MSCs,

we used the JNK activator (anisomycin) or Akt activator (insulin) in WJCMSCs. WJCMSCs

were treated with 100nM, 200nM or 500nM anisomycin for 24 h to activate JNK signaling, or

treated with 50nM, 100nM, 200nM or 500nM insulin for 24 h to activate Akt signaling. West-

ern Blot results showed that 100nM, 200nM or 500nM anisomycin could effectively activate

JNK signaling (S2 Fig), and 50nM, 100nM, 200nM or 500nM insulin could effectively activate

Akt signaling (S2 Fig). Then, 100nM anisomycin and 50nM insulin were selected for further

experiments. WJCMSCs were cultured in adipogenic-inducing medium with 100nM anisomy-

cin or 50nM insulin. Three weeks after induction, Oil Red O staining and real-time RT-PCR

results showed that 100nM anisomycin or 50nM insulin could significantly enhance the adipo-

genesis in WJCMSCs (S2 Fig).

Fig 3. IGFBP2 activates JNK and Akt signaling pathways. (A) Western Blot analysis demonstrated that IGFBP2

overexpression caused an increase in p-JNK and p-Akt in WJCMSCs, however, the total amounts of JNK, ERK, p38, and Akt

proteins were not affected; The phosphorylated p38 protein was not found. (B) Quantitative analysis of p-ERK, p-JNK, and p-Akt

based on Western Blot results for the WJCMSC-Flag-IGFBP2 cells and WJCMSC-Vector cells. Total ERK, JNK, and Akt were

used as internal control respectively. **p < 0.01. α: anti.

https://doi.org/10.1371/journal.pone.0184182.g003

IGFBP2 and WJCMSC adipogenic differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0184182 August 31, 2017 8 / 18

https://doi.org/10.1371/journal.pone.0184182.g003
https://doi.org/10.1371/journal.pone.0184182


IGFBP2-enhanced adipogenic differentiation of WJCMSCs is repressed

by JNK or Akt inhibitors

First, WJCMSCs were treated with 10 μM, 20 μM, 50 μM or 100 μM specific JNK inhibitor,

SP600125 for 48 h to block JNK signaling in WJCMSCs. Western Blot results (Fig 4A) and

quantitative analysis (Fig 4B) indicated that 20 μM, 50 μM or 100 μM SP600125 could effec-

tively block JNK signaling. Then, 20 μM SP600125 was selected for further experiments.

Transduced WJCMSCs were cultured in adipogenic-inducing medium with 20 μM SP600125.

Three weeks after induction, Oil Red O staining revealed that 20 μM SP600125 could restrain

IGFBP2-mediated enhancement of adipogenic differentiation in WJCMSCs (Fig 4C). After

normalizing the data with the total protein, the results indicated that the effect of IGFBP2-

increased adipogenic differentiation of WJCMSCs was associated with JNK activation (Fig

4D). To confirm this finding, we further examined the adipogenic differentiation markers

PPARγ and LPL by real-time RT-PCR. The results showed that PPARγ (Fig 4E) and LPL (Fig

4F) were significantly suppressed at 1, 2 or 3 weeks after induction in WJCMSC-Flag-IGFBP2
+ SP600125 group compared with WJCMSC-Flag-IGFBP2 group.

Then WJCMSCs were treated with specific Akt inhibitor, LY294002, to block Akt signaling

for 1 h at concentration of 10 μM, 20 μM, 50 μM or 80 μM. Western Blot results (Fig 5A) and

quantitative analysis (Fig 5B) suggested that 10 μM, 20 μM, 50 μM or 80 μM LY294002 could

block Akt signaling efficiently. Then, 10 μM LY294002 was selected for further experiments.

Compared with IGFBP2-infected cells, 10 μM LY294002 could inhibit IGFBP2-mediated

enhancement of adipogenic differentiation in WJCMSCs by Oil Red O staining (Fig 5C) and

quantitative lipid deposit measurements (Fig 5D). And real-time RT-PCR results showed that

PPARγ (Fig 5E) and LPL (Fig 5F) were significantly suppressed at 1, 2 or 3 weeks after induc-

tion in LY294002 treated WJCMSC-Flag-IGFBP2 group compared with untreated group.

Activated Akt signaling by IGFBP2 is repressed by the specific JNK

inhibitor in WJCMSCs

To further explore the underlying mechanism, we used the specific JNK inhibitor (20 μM

SP600125) or Akt inhibitor (10 μM LY294002) to block the activated JNK or Akt pathway by

IGFBP2 in WJCMSCs. Western Blot results (Fig 6A) and quantitative analysis (Fig 6B) showed

that 20 μM SP600125, which could inhibit the p-JNK level, effectively abrogated the expression

of phosphorylation-Akt in WJCMSC-Flag-IGFBP2 cells. However, treatment with 10 μM

LY294002 had no significant effect on the expression of p-JNK in WJCMSC-Flag-IGFBP2 cells

(Fig 6C and 6D).

BCOR negatively regulates IGFBP2 expression and inhibits adipogenic

differentiation of WJCMSCs

Ectopic BCOR overexpression was confirmed by Western Blot analysis (Fig 7A). Real-time

RT-PCR results showed that BCOR overexpression in WJCMSCs suppressed the expression of

IGFBP2 (Fig 7B). Next, to investigate adipogenic differentiation, WJCMSCs were cultured in

adipogenic-inducing medium. After induction for 3 weeks, Oil Red O staining (Fig 7C) and

quantitative lipid deposit measurements (Fig 7D) showed there were significantly fewer lipid

deposits in WJCMSC-Flag-BCOR cells than in WJCMSC-Vector cells.

Discussion

Mesenchymal stem cells derived from Wharton’s jelly of the umbilical cord, which are usually

discarded after birth, possess multipotent abilities between those of embryonic and adult stem

IGFBP2 and WJCMSC adipogenic differentiation
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Fig 4. Effect of JNK inhibitor on IGFBP2-induced adipogenic differentiation of WJCMSCs. (A) Western Blot analysis showed a reduction of p-

JNK in WJCMSC-Flag-IGFBP2 after treatment with a JNK inhibitor, SP600125 (10 μM, 20 μM, 50 μM or 100 μM in DMSO) for 48 h during adipogenic

induction. (B) Quantitative analysis of p-JNK based on Western Blot results. Total JNK was used as internal control. The expression levels that are

indicated with the same letter do not differ significantly. (C-D) Oil Red O staining and quantitative analysis revealed that 20 μM SP600125 effectively

suppressed IGFBP2-mediated enhancement of lipid formation. Scale bar: 100 μm. (E-F) Real-time RT-PCR results showed downregulated

expressions of PPARγ (E) and LPL (F) in WJCMSC-Flag-IGFBP2 cells following 20 μM SP600125 treatment during adipogenic induction at 1, 2, and 3

weeks. GAPDH was used as an internal control. **p < 0.01. α: anti; w: week.

https://doi.org/10.1371/journal.pone.0184182.g004
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Fig 5. Effect of Akt inhibitor on IGFBP2-induced adipogenic differentiation of WJCMSCs. (A) Western Blotting results showed a reduction of p-

Akt in WJCMSC-Flag-IGFBP2 following treatment with an Akt inhibitor, LY294002 (10 μM, 20 μM, 50 μM or 80 μM in DMSO) for 1 h during adipogenic

induction. (B) Quantitative analysis of p-Akt based on Western Blot results. Total Akt was used as internal control. The expression levels that are

indicated with the same letter do not differ significantly. (C-D) Oil Red O staining and quantitative analysis showed that 10 μM LY294002 effectively

inhibited IGFBP2-mediated adipogenic differentiation. Scale bar: 100 μm. (E-F) Real-time RT-PCR results showed downregulated expressions of

IGFBP2 and WJCMSC adipogenic differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0184182 August 31, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0184182


cells [2,45]. Studies have shown that WJCMSCs possess many attractive properties, including

expanding faster than adult-derived MSCs, ample cell supply and the potential for autologous

grafting if they are cryopreserved for future use [7,10,12]. Moreover, in clinical practice,

WJCMSCs have been successfully used to treat autoimmune disease [11]. Our previous study

PPARγ (E) and LPL (F) in WJCMSC-Flag-IGFBP2 cells following 10 μM LY294002 treatment during adipogenic induction at 1, 2, and 3 weeks.

GAPDH was used as an internal control. **p < 0.01. α: anti; w: week.

https://doi.org/10.1371/journal.pone.0184182.g005

Fig 6. IGFBP2-mediated Akt activation is abrogated by JNK inhibitor. (A) Western Blot results indicated that administration of 20 μM SP600125

decreased JNK activation and abrogated Akt phosphorylation in WJCMSC-Flag-IGFBP2 cells. (B) Quantitative analysis of p-JNK and p-Akt based on

Western Blot results for the WJCMSC-Vector cells, WJCMSC-Flag-IGFBP2 cells, and WJCMSC-Flag-IGFBP2 + 20 μM SP600125 cells. Total Akt and

JNK were used as internal control respectively. (C) Western Blotting results showed administration of 10 μM LY294002 decreased the level of p-Akt

activation, while had no effect on JNK phosphorylation in WJCMSC-Flag-IGFBP2 cells. (D) Quantitative analysis of p-Akt and p-JNK based on

Western Blot results. Total Akt and JNK were used as internal control respectively. **p < 0.01. α: anti.

https://doi.org/10.1371/journal.pone.0184182.g006
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found that compared with PDLSCs, WJCMSCs exhibited decreased adipogenic differentiation

potential, and unmodified WJCMSCs might not be good seed cells for tissue regeneration

[15]. Therefore, a critical issue for WJCMSCs applied in tissue engineering is how to enhance

the differentiation potentials and regenerative abilities. Using microarray analysis, we observed

decreased expression of IGFBP2 in WJCMSCs compared with PDLSCs [15]. IGFBP2 is mainly

expressed in highly proliferative fetal tissues which represent extensive cell movement and tis-

sue remodeling [46]. Our results confirm that IGFBP2 is a potential mediator for enhancing

adipogenic differentiation of WJCMSCs and BMSCs. The potentiality of IGFBP2 and the pos-

sibility of modulating specific pathways underlying biological process of WJCMSCs offer new

strategies in the field of regenerative medicine.

Regulation of adipogenic differentiation by growth factors is a complex process [20,47,48].

PPARγ is a master regulator of adipogenesis, and generally most all pro-adipogenic signaling

pathways associated with PPARγ [49]. JNK is one of the major sub families of MAPKs [25–27].

Studies revealed that JNK pathway was associated with regulating adipogenic differentiation.

Fig 7. BCOR decreases IGFBP2 expression and weakens adipogenic differentiation in WJCMSCs. (A) Flag-

BCOR-infected WJCMSCs showed BCOR overexpression, as determined by Western Blot analysis. GAPDH was

used as an internal control. (B) Real-time RT-PCR analysis showed that BCOR overexpression suppressed the

expression of IGFBP2 in WJCMSCs. GAPDH was used as an internal control. (C-D) Oil Red O staining and

quantitative analysis showed that BCOR overexpression inhibited the formation of lipid deposits. Scale bar: 500 μm

(a, b), 100μm (c, d). **p < 0.01. α: anti; w: week.

https://doi.org/10.1371/journal.pone.0184182.g007
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Previous research showed that wild-type IGFBP2-overexpressing cells showed a higher level of

phosphorylation JNK [42]. In NIH-OVCAR3 cells, IGFBP2 promoted proliferation, potenti-

ated ERK phosphorylation and activated SAPK/JNK signaling pathway [43]. Moreover, the

anti-adipogenesis effect of 6-thioinosine was mediated by decreased expression of PPARγ
through JNK pathway. Loss of JNK1 activity resulted in resistance to high-fat diet-induced

obesity in vivo [50,51]. In addition, Akt was also essential for inducing PPARγ and adipogenic

differentiation; depletion of Akt impaired adipogenesis in mice [39–41]. Furthermore,

impaired IGF1 mitogenesis involving the Akt pathway contributed to the distinct growth phe-

notype of visceral preadipocytes. More importantly, many researches inferred that using the

JNK specific inhibitor or siRNA led to decreased Akt phosphorylation in many cells and cell

processes [52–54]. However, it was reported that activation of JNK decreased Akt phosphory-

lation in liver tissue [42,43]. Pretreatment with the JNK specific inhibitor and salvianolic acid

A caused decreased p-JNK and increased p-Akt in diabetic rats with ischemia/reperfusion

[55]. Our results show that IGFBP2 overexpression activates phosphorylation of JNK and Akt

signaling, and activated JNK or Akt signaling enhances adipogenic differentiation of MSCs. In

addition, JNK or Akt inhibitor suppresses IGFBP2-mediated enhancement of adipogenic dif-

ferentiation in WJCMSCs. Separately, the results indicated that JNK and Akt signaling path-

way exert an important role for IGFBP2-enhanced adipogenic differentiation. Furthermore,

the specific JNK inhibitor markedly decreases the expression of phosphorylated Akt activated

by IGFBP2, indicating that Akt is the downstream of the JNK in IGFBP2 mediated signaling

cascade. Taken together, our results confirm that IGFBP2 enhances adipogenic differentiation

of WJCMSCs via activated JNK/Akt signaling pathway. However, further study is required to

investigate the regulation mechanism about JNK/Akt crosstalk in the process.

In addition to these results, we also find that BCOR negatively regulates the expression of

IGFBP2; this is consistent with our previous microarray analysis, which found that IGFBP2
was highly expressed in stem cells from the apical papilla (SCAPs) from oculo-facio-cardio-

dental (OFCD) syndrome that had a mutation in BCOR [56]. Our results also reveal that

BCOR represses adipogenic differentiation of WJCMSCs. The BCOR gene encodes a protein

known as the BCL6 co-repressor, which might use an epigenetic mechanism to direct gene

silencing [56–58]. Previous researches inferred that BCOR regulated the function of MSCs by

associating with the activating enhancer binding protein 2 alpha (AP2α) promoter [56]. The 5’

flanking region of IGFBP2 gene contains motifs that might be recognized by transcription fac-

tor AP2 [59]. Based on those studies, we speculate BCORmay be involved in the regulation of

IGFBP2 by epigenetics or AP2. However, this is beyond the scope of the current study and will

require further investigation.

In summary, our results identify a novel function of IGFBP2 in adipogenic differentiation

of MSCs. Generally, BCOR negatively regulates IGFBP2, and overexpression of IGFBP2 can

enhance the adipogenic differentiation of WJCMSCs through activating JNK and Akt signal-

ing pathways. This study elucidates molecular mechanisms underlying adipogenic differentia-

tion of WJCMSCs, and suggests that IGFBP2 may be a potential target to promote the adipose

tissue regeneration.

Supporting information

S1 Fig. IGFBP2 overexpression enhances adipogenic differentiation in BMSCs. (A) Flag-

IGFBP2-infected BMSCs showed IGFBP2 overexpression by Real-time RT-PCR. (B-C) Oil Red

O staining and quantitative analysis showed that IGFBP2 overexpression prompted formation

of lipid deposits. Scale bar: 100 μm. (D-E) Real-time RT-PCR showed that overexpression of

IGFBP2 upregulated expressions of PPARγ (D) and LPL (E) in BMSCs after induction.
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GAPDH was used as an internal control. ��p< 0.01. α: anti; w: week.

(TIF)

S2 Fig. (A) Western Blotting results showed an accumulation of p-JNK in WJCMSCs follow-

ing treatment with the JNK activator, anisomycin (100 nM, 200 nM or 500 nM in ethanol) for

24 h during adipogenic induction. (B) Quantitative analysis of p-JNK based on Western Blot

results. Total JNK was used as internal control. The expression levels that are indicated with

the same letter do not differ significantly. (C) Western Blotting results showed an accumula-

tion of p-Akt in WJCMSCs following treatment with the Akt activator, insulin (50 nM, 100

nM, 200 nM or 500 nM in culture medium) for 24 h during adipogenic induction. (D) Quanti-

tative analysis of p-Akt based on Western Blot results. Total Akt was used as internal control.

The expression levels that are indicated with the same letter do not differ significantly. (E-F)

Oil Red O staining and quantitative analysis showed that 100 nM anisomycin or 50 nM insulin

prompted formation of lipid deposits. Scale bar: 100 μm. (G-H) Real-time RT-PCR results

showed upregulated expressions of PPARγ (G) and LPL (H) in WJCMSC cells following 100

nM anisomycin or 50 nM insulin treatment during adipogenic induction at 0 and 3 weeks.

GAPDH was used as an internal control. ��p< 0.01. α: anti; w: week.

(TIF)

S1 Data. This file contains all the primary data of the results in this manuscript.
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